[PDF]
http://dx.doi.org/10.3952/lithjphys.46208
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 261–270 (2006)
EVALUATION OF SCATTERED
RADIATION IN MAMMOGRAPHY EXAMINATION WITH Si DETECTOR
D. Adlienėa and I. Cibulskaitėa,b
aKaunas University of Technology, Studentų 50,
LT-51368 Kaunas, Lithuania
E-mail: diana.adliene@ktu.lt
bKaunas Medical University Clinic, Eivenių 2,
LT-50009 Kaunas, Lithuania
E-mail: onko@takas.lt
Received 9 December 2005
Monte Carlo simulations for interaction
processes of low energy (23–25 keV) X-ray photons, which are
commonly used in mammography examinations, are presented in this
paper. The contribution of scattered radiation to the total dose
is determined using scattering factor and the influence of
scattered radiation for measurements with Si detector is
investigated. Modelling results are compared with the results of
experimental in vitro measurements using a phantom.
Keywords: scattered radiation, Compton scattering, glandular
tissue dose, mammography, Monte Carlo method
PACS: 02.70.Uu , 29.40.Wk , 32.80.Cy
IŠSKLAIDYTOSIOS SPINDULIUOTĖS
INDĖLIO VERTINIMAS MAMOGRAFINIAME TYRIME PANAUDOJANT Si
DETEKTORIŲ
. D. Adlienėa, I. Cibulskaitėa,b
aKauno technologijos universitetas, Kaunas, Lietuva
bKauno medicinos universiteto klinikos, Kaunas,
Lietuva
Pristatomi mažų energijos verčių (23–25 keV)
Rentgeno fotonų, kokie naudojami mamografinių tyrimų metu,
sąveikos su PMMA (polimetilmetakrilato) fantomu Monte Karlo
modeliavimo rezultatai. Nustačius sklaidos koeficientus, vertinama
sklaidos dėl Relėjaus (Rayleigh) ir Komptono (Compton) sąveikos
įtaka apskaičiuotajai dozei. Monte Karlo modeliavimo rezultatai
palyginami su eksperimentiniais duomenimis, gautais matuojant in
vitro. Remiantis rezultatų analize, svarstoma galimybė
naudoti Si detektorius dozėms medicininiame fantome įvertinti.
References / Nuorodos
[1] I. Andersson and I. Janzon, Reduced breast cancer mortality in
women under age 50: Updated results from Malmo Mammographic
Screening Program, J. Natl. Cancer Inst. Monogr. 1997(22),
63–67 (1997),
http://dx.doi.org/10.1093/jncimono/1997.22.63
[2] M. Ramos, S. Ferrer, J.I. Villaescusa, G. Verdu, M.D. Salas, and
M.D. Cuevas, Use of risk projection models to estimate mortality and
incidence from radiation induced breast cancer in screening
programs, Phys. Med. Biol. 50, 505–520 (2005),
http://dx.doi.org/10.1088/0031-9155/50/3/008
[3] J. Law and K. Faulkner, Cancers detected and induced, and
associated risk and benefit, in breast screening programme, Br. J.
Radiol. 74, 1121–1127 (2001),
http://dx.doi.org/10.1259/bjr.74.888.741121
[4] N. Perry, M. Broeders, C. de Wolf, and S. Tornberg, European
Guidelines for Quality Assurance in Mammography Screening
(EUREF, European Commission, 2001)
[5] EURATOM. The European medical exposure directive 97 / 43 Euratom
on health protection of individuals against the dangers of ionizing
radiation in relation to medical exposure, Official J. European
Communities (L 180), 22–27 (1997),
http://eur-lex.europa.eu/eli/dir/1997/43/oj/eng
[6] J. Zoetelief, M. Fitzgerald, W. Leitz, and M. Sabel, European
Protocol on Dosimetry in Mammography EUR 16263 (European Commission,
Luxemburg, 1996)
[7] J. Zoetelief, A.H.L. Aalbers, L.B. Beentjes, J.J. Broerse, H.W.
Julius, and C. Zuur, Dosimetric Aspects of Mammography,
Report 6 of the Netherlands Commission on Radiation Dosimetry (1993)
[8] M.C. Aznar, B. Hemdal, J. Medin, C.J. Markman, C.E. Andersen, L.
Bøtter-Jensen, I. Andersson, and S. Mattsson, In vivo
absorbed dose measurements in mammography using a new real time
luminescence technique, Br. J. Radiol. 78, 328–334 (2005),
http://dx.doi.org/10.1259/bjr/22554286
[9] L. Bøtter-Jensen and S. McKeewer, Optically stimulated
luminescence dosimetry using natural and synthetic materials,
Radiat. Prot. Dosimetry 65, 273–280 (1996),
http://dx.doi.org/10.1093/oxfordjournals.rpd.a031640
[10] C.A. Carlsson and G.A. Carlsson, Dosimetry in diagnostic
radiology and computerized tomography, in: The Dosimetry of
Ionizing Radiation, Vol. III, ed. F.H. Attix (Academic Press,
New York, 1990) pp. 163–220,
http://dx.doi.org/10.1016/B978-0-12-400403-0.50006-3
[11] D. Dance, Monte Carlo calculations of conversion factors for
the estimation of mean glandular breast dose, Phys. Med. Biol. 35,
1211–1219 (1990),
http://dx.doi.org/10.1088/0031-9155/35/9/002
[12] D. Dance, C. Skiner, K. Young, J. Beckert, and C. Kotre,
Additional factors for the estimation of mean glandular breast dose
using UK mammography dosimetry protocol, Phys. Med. Biol. 45,
3225–3240 (2000),
http://dx.doi.org/10.1088/0031-9155/45/11/308
[13] R. Van Egen, K. Young, H. Bosmans, and M. Thijssen, Addendum
of Digital Mammography. Guidelines for Quality Assurance in
Mammography Screening (EUREF, European Commission, Nijmegen,
The Netherlands, 2003)
[14] M. Born, Atomic Physics (Blackie and Son, London, 1969)
[15] J.H. Hubel and I. Overbro, Relativistic atomic form factors and
photon coherent scattering cross section, J. Phys. Chem. Ref. Data 9,
69 (1979),
http://dx.doi.org/10.1063/1.555593
[16] E. Storm and H.I. Israel, Photon cross sections from 1 keV to
100 MeV for elements Z = 1 to Z = 100, At. Data
Nucl. Data Tables 7, 565–681 (1970),
http://dx.doi.org/10.1016/S0092-640X(70)80017-1
[17] R. Ribberfors, Relationship of the Compton cross section to the
momentum distribution of bound electron states, Phys. Rev. B 12,
2067–2074 (1975),
http://dx.doi.org/10.1103/PhysRevB.12.2067
[18] O. Klein and Y. Nishina, Über die Streuung von Strahlung durch
freie Elektronen nach der neuen relativistischen Quantendynamik von
Dirac, Z. Physik 52, 853–868 (1929),
http://dx.doi.org/10.1007/BF01366453
[19] I. Kawrakow and D.W.O. Rogers, The EGSnrc Code System.
Monte Carlo Simulation of Electron and Photon Transport
(National Reasearch Council of Canada, 2003),
http://www.irs.inms.nrc.ca
[20] K. Cranley, B.J. Gilmore, G.W.A. Fogarty, and I. Desponds, Catalogue
of Diagnostic X-ray Spectra and Other Data, Institute of
Physics and Engineering in Medicine, Report No. 78 (1997)
[21] D.W.O. Rogers, I. Kawrakow, J.P. Seuntjens, B.R.B. Walters, and
E. Mainegra-Hing, NRC User Codes for EGSnrc (National
Research Council of Canada, 2003)
[22] J.T.M. Jansen, J. Dierker, and J. Zoetlief, Calculations of air
kerma to mean glandular dose conversion factors for mammography
units employing various target-filter combinations, in: Proceedings
of the Xth Scientific Symposium of the Belgian Society of Hospital
Physicists (Belgian Society of Hospital Physicists, Antwerpen,
1994), pp. 66–75
[23] N. Meriç, D. Bor, and N. Büget, Determination of scatter
fractions of some materials by experimental studies and Monte Carlo
calculations, Appl. Radiat. Isotopes 51, 161–167 (1999),
http://dx.doi.org/10.1016/S0969-8043(98)00160-2
[24] J.M. Boon, K.K. Lindfors, V.N. Cooper III, and J.A. Seibert,
Scatter / primary in mammography: Comprehensive result, Med. Phys.
27, 1300–1310 (2000),
http://dx.doi.org/10.1118/1.1312812
[25] K. Shimizu, K. Koshida, and T. Miaty, Monte Carlo simulation
analysis of backscatter factor for low energy x-ray, in: Proceedings
of the 9th EGS4 users meeting in Japan, KEK Proceedings
2001-22, 115–118 (2001)