[PDF]    http://dx.doi.org/10.3952/lithjphys.46208

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 261–270 (2006)


EVALUATION OF SCATTERED RADIATION IN MAMMOGRAPHY EXAMINATION WITH Si DETECTOR
D. Adlienėa and I. Cibulskaitėa,b
aKaunas University of Technology, Studentų 50, LT-51368 Kaunas, Lithuania
E-mail: diana.adliene@ktu.lt
bKaunas Medical University Clinic, Eivenių 2, LT-50009 Kaunas, Lithuania
E-mail: onko@takas.lt

Received 9 December 2005

Monte Carlo simulations for interaction processes of low energy (23–25 keV) X-ray photons, which are commonly used in mammography examinations, are presented in this paper. The contribution of scattered radiation to the total dose is determined using scattering factor and the influence of scattered radiation for measurements with Si detector is investigated. Modelling results are compared with the results of experimental in vitro measurements using a phantom.
Keywords: scattered radiation, Compton scattering, glandular tissue dose, mammography, Monte Carlo method
PACS: 02.70.Uu , 29.40.Wk , 32.80.Cy


IŠSKLAIDYTOSIOS SPINDULIUOTĖS INDĖLIO VERTINIMAS MAMOGRAFINIAME TYRIME PANAUDOJANT Si DETEKTORIŲ
. D. Adlienėa, I. Cibulskaitėa,b
aKauno technologijos universitetas, Kaunas, Lietuva
bKauno medicinos universiteto klinikos, Kaunas, Lietuva

Pristatomi mažų energijos verčių (23–25 keV) Rentgeno fotonų, kokie naudojami mamografinių tyrimų metu, sąveikos su PMMA (polimetilmetakrilato) fantomu Monte Karlo modeliavimo rezultatai. Nustačius sklaidos koeficientus, vertinama sklaidos dėl Relėjaus (Rayleigh) ir Komptono (Compton) sąveikos įtaka apskaičiuotajai dozei. Monte Karlo modeliavimo rezultatai palyginami su eksperimentiniais duomenimis, gautais matuojant in vitro. Remiantis rezultatų analize, svarstoma galimybė naudoti Si detektorius dozėms medicininiame fantome įvertinti.


References / Nuorodos


[1] I. Andersson and I. Janzon, Reduced breast cancer mortality in women under age 50: Updated results from Malmo Mammographic Screening Program, J. Natl. Cancer Inst. Monogr. 1997(22), 63–67 (1997),
http://dx.doi.org/10.1093/jncimono/1997.22.63
[2] M. Ramos, S. Ferrer, J.I. Villaescusa, G. Verdu, M.D. Salas, and M.D. Cuevas, Use of risk projection models to estimate mortality and incidence from radiation induced breast cancer in screening programs, Phys. Med. Biol. 50, 505–520 (2005),
http://dx.doi.org/10.1088/0031-9155/50/3/008
[3] J. Law and K. Faulkner, Cancers detected and induced, and associated risk and benefit, in breast screening programme, Br. J. Radiol. 74, 1121–1127 (2001),
http://dx.doi.org/10.1259/bjr.74.888.741121
[4] N. Perry, M. Broeders, C. de Wolf, and S. Tornberg, European Guidelines for Quality Assurance in Mammography Screening (EUREF, European Commission, 2001)
[5] EURATOM. The European medical exposure directive 97 / 43 Euratom on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, Official J. European Communities (L 180), 22–27 (1997),
http://eur-lex.europa.eu/eli/dir/1997/43/oj/eng
[6] J. Zoetelief, M. Fitzgerald, W. Leitz, and M. Sabel, European Protocol on Dosimetry in Mammography EUR 16263 (European Commission, Luxemburg, 1996)
[7] J. Zoetelief, A.H.L. Aalbers, L.B. Beentjes, J.J. Broerse, H.W. Julius, and C. Zuur, Dosimetric Aspects of Mammography, Report 6 of the Netherlands Commission on Radiation Dosimetry (1993)
[8] M.C. Aznar, B. Hemdal, J. Medin, C.J. Markman, C.E. Andersen, L. Bøtter-Jensen, I. Andersson, and S. Mattsson, In vivo absorbed dose measurements in mammography using a new real time luminescence technique, Br. J. Radiol. 78, 328–334 (2005),
http://dx.doi.org/10.1259/bjr/22554286
[9] L. Bøtter-Jensen and S. McKeewer, Optically stimulated luminescence dosimetry using natural and synthetic materials, Radiat. Prot. Dosimetry 65, 273–280 (1996),
http://dx.doi.org/10.1093/oxfordjournals.rpd.a031640
[10] C.A. Carlsson and G.A. Carlsson, Dosimetry in diagnostic radiology and computerized tomography, in: The Dosimetry of Ionizing Radiation, Vol. III, ed. F.H. Attix (Academic Press, New York, 1990) pp. 163–220,
http://dx.doi.org/10.1016/B978-0-12-400403-0.50006-3
[11] D. Dance, Monte Carlo calculations of conversion factors for the estimation of mean glandular breast dose, Phys. Med. Biol. 35, 1211–1219 (1990),
http://dx.doi.org/10.1088/0031-9155/35/9/002
[12] D. Dance, C. Skiner, K. Young, J. Beckert, and C. Kotre, Additional factors for the estimation of mean glandular breast dose using UK mammography dosimetry protocol, Phys. Med. Biol. 45, 3225–3240 (2000),
http://dx.doi.org/10.1088/0031-9155/45/11/308
[13] R. Van Egen, K. Young, H. Bosmans, and M. Thijssen, Addendum of Digital Mammography. Guidelines for Quality Assurance in Mammography Screening (EUREF, European Commission, Nijmegen, The Netherlands, 2003)
[14] M. Born, Atomic Physics (Blackie and Son, London, 1969)
[15] J.H. Hubel and I. Overbro, Relativistic atomic form factors and photon coherent scattering cross section, J. Phys. Chem. Ref. Data 9, 69 (1979),
http://dx.doi.org/10.1063/1.555593
[16] E. Storm and H.I. Israel, Photon cross sections from 1 keV to 100 MeV for elements Z = 1 to Z = 100, At. Data Nucl. Data Tables 7, 565–681 (1970),
http://dx.doi.org/10.1016/S0092-640X(70)80017-1
[17] R. Ribberfors, Relationship of the Compton cross section to the momentum distribution of bound electron states, Phys. Rev. B 12, 2067–2074 (1975),
http://dx.doi.org/10.1103/PhysRevB.12.2067
[18] O. Klein and Y. Nishina, Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Z. Physik 52, 853–868 (1929),
http://dx.doi.org/10.1007/BF01366453
[19] I. Kawrakow and D.W.O. Rogers, The EGSnrc Code System. Monte Carlo Simulation of Electron and Photon Transport (National Reasearch Council of Canada, 2003),
http://www.irs.inms.nrc.ca
[20] K. Cranley, B.J. Gilmore, G.W.A. Fogarty, and I. Desponds, Catalogue of Diagnostic X-ray Spectra and Other Data, Institute of Physics and Engineering in Medicine, Report No. 78 (1997)
[21] D.W.O. Rogers, I. Kawrakow, J.P. Seuntjens, B.R.B. Walters, and E. Mainegra-Hing, NRC User Codes for EGSnrc (National Research Council of Canada, 2003)
[22] J.T.M. Jansen, J. Dierker, and J. Zoetlief, Calculations of air kerma to mean glandular dose conversion factors for mammography units employing various target-filter combinations, in: Proceedings of the Xth Scientific Symposium of the Belgian Society of Hospital Physicists (Belgian Society of Hospital Physicists, Antwerpen, 1994), pp. 66–75
[23] N. Meriç, D. Bor, and N. Büget, Determination of scatter fractions of some materials by experimental studies and Monte Carlo calculations, Appl. Radiat. Isotopes 51, 161–167 (1999),
http://dx.doi.org/10.1016/S0969-8043(98)00160-2
[24] J.M. Boon, K.K. Lindfors, V.N. Cooper III, and J.A. Seibert, Scatter / primary in mammography: Comprehensive result, Med. Phys. 27, 1300–1310 (2000),
http://dx.doi.org/10.1118/1.1312812
[25] K. Shimizu, K. Koshida, and T. Miaty, Monte Carlo simulation analysis of backscatter factor for low energy x-ray, in: Proceedings of the 9th EGS4 users meeting in Japan, KEK Proceedings 2001-22, 115–118 (2001)