[PDF]
http://dx.doi.org/10.3952/lithjphys.46210
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 163–167 (2006)
QUANTUM MECHANICAL DESIGN OF TWO
LOGICAL FUNCTIONS MOLECULAR DEVICE
J. Tamulienėa, A. Tamulisa, A. Žiriakovienėa,
and A. Grajab
aInstitute of Theoretical Physics and Astronomy of
Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: gicevic@itpa.lt
bInstitute of Molecular Physics, Polish Academy
of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
Received 21 March 2006
Quantum mechanical investigations of isolate
molecules and a bridge fragment are performed. Based on the
investigation results, the design of two logical functions device
was done. The investigation results indicate that the molecular
device could be applied as logical YES and / or NOT functions. The
extension of the concept of a molecular device is of interest for
the growth of nanoscience and the development of nanotechnology,
as well as the control of chemical reactions.
Keywords: molecular logical function, nanoscience, excited
state, charge transfer, molecular device
PACS: 31.15 Ar, 34.70.+e
VANADŽIO OKSIDŲ BRONZŲ
ZOLIS–GELIS SINTEZĖ IR RENTGENO FOTOELEKTRONINIAI SPEKTRAI
J. Tamulienėa, A. Tamulisa, A. Žiriakovienėa,
A. Grajab
aVU Teorinės fizikos ir astronomijos institutas,
Vilnius, Lietuva
bMolekulinės fizikos institutas, Poznanė,
Lenkija
Atlikus supermolekulės, sudarytos iš DO3 ir
ditieno[3,2-b:2’,3’-d]tiofeno (tiofeno) molekulių, sujungtų −CH=N−
tiltelio fragmentu, kvantinės chemijos teorinius tyrimus,
teigiama, kad ji gali būti panaudojama kaip dviejų loginių
funkcijų NE ir TAIP molekulinis prietaisas. Remiantis tyrimų
rezultatais parodyta šios supermolekulės molekulinių orbitalių
prigimtis ir numatyta, kad, atitinkamai sužadinus, galima
elektronų pernaša nuo skirtingų DO3 molekulės fragmentų ant
tiofeno molekulės. Pateiktos rastos pernešamo krūvio vertės,
kurios patvirtina aukščiau aprašytas prielaidas. Būtent ši
pernašos savybė yra panaudota modeliuojant dviejų loginių funkcijų
prietaisą.
References / Nuorodos
[1] V. Balzani, Photochemical molecular devices, Photochem.
Photobiol. Sci. 2(5), 459–476 (2003),
http://dx.doi.org/10.1039/b300075n
[2] Ch. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang, X. Liu, Z.
Liu, S. Asano, M. Meyyappan, J. Han, and Ch. Zhou, Multilevel memory
based on molecular devices, Appl. Phys. Lett. 84(11),
1949–1951 (2004),
http://dx.doi.org/10.1063/1.1667615
[3] K.A. Williams, P.T.M. Veenhuizen, B.G. de la Torre, R. Eritja,
and C. Dekker, Towards DNA-mediated self assembly of carbon nanotube
molecular devices, AIP Conf. Proc. 633(1), 444–448 (2002),
http://dx.doi.org/10.1063/1.1514159
[4] A. Yassar, F. Garnier, H. Jaafari, N. Rebière-Galy, M. Frigoli,
C. Moustrou, A. Samat, and R. Guglielmetti, Light-triggered
molecular devices based on photochromic oligothiophene substituted
chromenes, Appl. Phys. Lett. 80(23), 4297–4299 (2002),
http://dx.doi.org/10.1063/1.1481240
[5] B. Nurnberg, W. Togel, G. Krause, R. Storm, E. Breitweg-Lehmann,
and W. Schunack, Non-peptide G-protein activators as promising tools
in cell biology and potential drug leads, Eur. Med. Chem. 34(1)
5–30 (1999),
http://dx.doi.org/10.1016/S0223-5234(99)80037-3
[6] S. Giordani, M.A. Cejas, and F.M. Raymo, Photoinduced proton
exchange between molecular switches, Tetrahedron 60(48),
10973–10981 (2004),
http://dx.doi.org/10.1016/j.tet.2004.09.065
[7] J.Y. Liu, A.H. Flood, and J.F. Stoddart, Thermally and
electrochemically controllable self-complexing molecular switches,
Am. Chem. Soc. 126(30), 9150–9151 (2004),
http://dx.doi.org/10.1021/ja048164t
[8] S.S. Pennadam, K. Firman, A. Cameron, and D.C. Górecki,
Protein-polymer nano-machines. Towards synthetic control of
biological processes, J. Nanobiotechnol. 2(8) 1–7 (2004),
http://dx.doi.org/10.1186/1477-3155-2-8
[9] T. Nishikawa and T. Mitani, A new approach to molecular devices
using SAMs, LSMCD and Cat-CVD, Sci. Technol. Adv. Mater. 4(1),
81–89 (2003),
http://dx.doi.org/10.1016/S1468-6996(03)00013-5
[10] U. Peskin, M. Abu-Hilu, and Sh. Speiser, Approaches to
molecular devices based on controlled intramolecular electronic
energy and electron transfer. Electron transfer rates through
flexible molecular bridges bya time-dependent super exchange model,
Opt. Mater. 24(1–2) 23–29 (2003),
http://dx.doi.org/10.1016/S0925-3467(03)00100-9
[11] H.H. Heinze, A. Gorling, and N.J. Rosch, An efficient method
for calculating molecular excitation energies by time-dependent
density-functional theory, Chem. Phys. 113(6),
2088–2099(2000),
http://dx.doi.org/10.1063/1.482020
[12] P.J. Thomas, M.A. Qidwai, P. Matic, and R.K. Everrett,
Composite materials with multifunctional structure-power
capabilities, in: American Society for Composites (ASC) 16,
Technical Conference Proceedings CDROM, eds. M.W. Hyer and
A.C. Loos, Virginia Tech., Blacksburg, VA, September 9–12, 2001
[13] S. Torquato, S. Hyun, and A. Donev, Multifunctional composites:
Optimizing microstructures for simultaneous transport of heat and
electricity, Phys. Rev. Lett. 89(26), 266601-1–4 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.266601
[14] M.L. Balevicius, J. Tamuliene, and A. Tamulis, Role of excited
states on cis-trans isomerization of disperse orange 3 molecule,
Lithuanian J. Phys. 40(6), 387–393 (2000)
[15] J. Tamuliene, M.-L. Balevicius, and A. Tamulis, How has the
bridge fragment choosen to design of charge transfer molecular
device?, Structural Chem. 15(6) 579–585 (2004),
http://dx.doi.org/10.1007/s11224-004-0733-0
[16] M.L. Balevicius, J. Tamuliene, and A. Tamulis, Influence of
various substituents for isomerization process of azo-dye,
Lithuanian J. Phys. 41(2), 83–88 (2001)
[17] A. Tamulis, J. Tamuliene, M.L. Balevicius, and Z. Rinkevicius,
Ab initio quantum chemical search of per linear transition
state of azo-dye molecules and design of molecular logical machines,
Nonlinear Opt. 27, 481–488 (2001)
[18] J. Nunzi, private communication
[19] J. Seixas de Melo, H.D. Burrows, M. Svensson, M.R. Andersson,
and A.P. Monkman, Photophysics of thiophene based polymers in
solution: The role of nonradiative decay processes, J. Chem. Phys. 118(3),
1550–1556 (2003),
http://dx.doi.org/10.1063/1.1528604