[PDF]    http://dx.doi.org/10.3952/lithjphys.46210

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 163–167 (2006)


QUANTUM MECHANICAL DESIGN OF TWO LOGICAL FUNCTIONS MOLECULAR DEVICE
J. Tamulienėa, A. Tamulisa, A. Žiriakovienėa, and A. Grajab
aInstitute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: gicevic@itpa.lt
bInstitute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland

Received 21 March 2006

Quantum mechanical investigations of isolate molecules and a bridge fragment are performed. Based on the investigation results, the design of two logical functions device was done. The investigation results indicate that the molecular device could be applied as logical YES and / or NOT functions. The extension of the concept of a molecular device is of interest for the growth of nanoscience and the development of nanotechnology, as well as the control of chemical reactions.
Keywords: molecular logical function, nanoscience, excited state, charge transfer, molecular device
PACS: 31.15 Ar, 34.70.+e


VANADŽIO OKSIDŲ BRONZŲ ZOLIS–GELIS SINTEZĖ IR RENTGENO FOTOELEKTRONINIAI SPEKTRAI
J. Tamulienėa, A. Tamulisa, A. Žiriakovienėa, A. Grajab
aVU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
bMolekulinės fizikos institutas, Poznanė, Lenkija

Atlikus supermolekulės, sudarytos iš DO3 ir ditieno[3,2-b:2’,3’-d]tiofeno (tiofeno) molekulių, sujungtų −CH=N− tiltelio fragmentu, kvantinės chemijos teorinius tyrimus, teigiama, kad ji gali būti panaudojama kaip dviejų loginių funkcijų NE ir TAIP molekulinis prietaisas. Remiantis tyrimų rezultatais parodyta šios supermolekulės molekulinių orbitalių prigimtis ir numatyta, kad, atitinkamai sužadinus, galima elektronų pernaša nuo skirtingų DO3 molekulės fragmentų ant tiofeno molekulės. Pateiktos rastos pernešamo krūvio vertės, kurios patvirtina aukščiau aprašytas prielaidas. Būtent ši pernašos savybė yra panaudota modeliuojant dviejų loginių funkcijų prietaisą.


References / Nuorodos


[1] V. Balzani, Photochemical molecular devices, Photochem. Photobiol. Sci. 2(5), 459–476 (2003),
http://dx.doi.org/10.1039/b300075n
[2] Ch. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang, X. Liu, Z. Liu, S. Asano, M. Meyyappan, J. Han, and Ch. Zhou, Multilevel memory based on molecular devices, Appl. Phys. Lett. 84(11), 1949–1951 (2004),
http://dx.doi.org/10.1063/1.1667615
[3] K.A. Williams, P.T.M. Veenhuizen, B.G. de la Torre, R. Eritja, and C. Dekker, Towards DNA-mediated self assembly of carbon nanotube molecular devices, AIP Conf. Proc. 633(1), 444–448 (2002),
http://dx.doi.org/10.1063/1.1514159
[4] A. Yassar, F. Garnier, H. Jaafari, N. Rebière-Galy, M. Frigoli, C. Moustrou, A. Samat, and R. Guglielmetti, Light-triggered molecular devices based on photochromic oligothiophene substituted chromenes, Appl. Phys. Lett. 80(23), 4297–4299 (2002),
http://dx.doi.org/10.1063/1.1481240
[5] B. Nurnberg, W. Togel, G. Krause, R. Storm, E. Breitweg-Lehmann, and W. Schunack, Non-peptide G-protein activators as promising tools in cell biology and potential drug leads, Eur. Med. Chem. 34(1) 5–30 (1999),
http://dx.doi.org/10.1016/S0223-5234(99)80037-3
[6] S. Giordani, M.A. Cejas, and F.M. Raymo, Photoinduced proton exchange between molecular switches, Tetrahedron 60(48), 10973–10981 (2004),
http://dx.doi.org/10.1016/j.tet.2004.09.065
[7] J.Y. Liu, A.H. Flood, and J.F. Stoddart, Thermally and electrochemically controllable self-complexing molecular switches, Am. Chem. Soc. 126(30), 9150–9151 (2004),
http://dx.doi.org/10.1021/ja048164t
[8] S.S. Pennadam, K. Firman, A. Cameron, and D.C. Górecki, Protein-polymer nano-machines. Towards synthetic control of biological processes, J. Nanobiotechnol. 2(8) 1–7 (2004),
http://dx.doi.org/10.1186/1477-3155-2-8
[9] T. Nishikawa and T. Mitani, A new approach to molecular devices using SAMs, LSMCD and Cat-CVD, Sci. Technol. Adv. Mater. 4(1), 81–89 (2003),
http://dx.doi.org/10.1016/S1468-6996(03)00013-5
[10] U. Peskin, M. Abu-Hilu, and Sh. Speiser, Approaches to molecular devices based on controlled intramolecular electronic energy and electron transfer. Electron transfer rates through flexible molecular bridges bya time-dependent super exchange model, Opt. Mater. 24(1–2) 23–29 (2003),
http://dx.doi.org/10.1016/S0925-3467(03)00100-9
[11] H.H. Heinze, A. Gorling, and N.J. Rosch, An efficient method for calculating molecular excitation energies by time-dependent density-functional theory, Chem. Phys. 113(6), 2088–2099(2000),
http://dx.doi.org/10.1063/1.482020
[12] P.J. Thomas, M.A. Qidwai, P. Matic, and R.K. Everrett, Composite materials with multifunctional structure-power capabilities, in: American Society for Composites (ASC) 16, Technical Conference Proceedings CDROM, eds. M.W. Hyer and A.C. Loos, Virginia Tech., Blacksburg, VA, September 9–12, 2001
[13] S. Torquato, S. Hyun, and A. Donev, Multifunctional composites: Optimizing microstructures for simultaneous transport of heat and electricity, Phys. Rev. Lett. 89(26), 266601-1–4 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.266601
[14] M.L. Balevicius, J. Tamuliene, and A. Tamulis, Role of excited states on cis-trans isomerization of disperse orange 3 molecule, Lithuanian J. Phys. 40(6), 387–393 (2000)
[15] J. Tamuliene, M.-L. Balevicius, and A. Tamulis, How has the bridge fragment choosen to design of charge transfer molecular device?, Structural Chem. 15(6) 579–585 (2004),
http://dx.doi.org/10.1007/s11224-004-0733-0
[16] M.L. Balevicius, J. Tamuliene, and A. Tamulis, Influence of various substituents for isomerization process of azo-dye, Lithuanian J. Phys. 41(2), 83–88 (2001)
[17] A. Tamulis, J. Tamuliene, M.L. Balevicius, and Z. Rinkevicius, Ab initio quantum chemical search of per linear transition state of azo-dye molecules and design of molecular logical machines, Nonlinear Opt. 27, 481–488 (2001)
[18] J. Nunzi, private communication
[19] J. Seixas de Melo, H.D. Burrows, M. Svensson, M.R. Andersson, and A.P. Monkman, Photophysics of thiophene based polymers in solution: The role of nonradiative decay processes, J. Chem. Phys. 118(3), 1550–1556 (2003),
http://dx.doi.org/10.1063/1.1528604