[PDF]
http://dx.doi.org/10.3952/lithjphys.46213
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 251–259 (2006)
INFLUENCE OF AIR MASS LONG-RANGE
TRANSPORT ON OZONE CONCENTRATION AT PREILA SITE (LITHUANIA)
S. Byčenkienė and R. Girgždienė
Institute of Physics, Savanorių 231, LT-02300 Vilnius,
Lithuania
E-mail: bycenkiene@ar.fi.lt
Received 5 January 2006
Ground-level ozone measurement data and air
mass backward trajectories were used to determine the influence of
the long-range transport on the ozone level. A cluster algorithm
was implemented to analyse the backward trajectories of air masses
arriving from North America to the Preila site located on the
eastern coast of the Baltic Sea. The 10-day air mass backward
trajectories were clustered and grouped according to season,
travelled way, and height over the surface before arrival.
Dominant air mass transport from North America was identified in
the late autumn–winter (up to 69% of total events). The air masses
from the “unpolluted” cluster in all seasons, except summertime,
showed slightly higher ozone concentrations than those from the
“polluted” cluster. The highest ozone concentration of 78±12 μg
m−3 was found in air masses that travelled at the >2
km height above the surface from the “unpolluted” cluster during a
winter period. It was established that the transport of air masses
from North America was mainly associated with cyclones (65%). The
change in the ozone level at the Preila site was up to ±10 μg
m−3 during the episodes when the transport of air
masses from North America was detected.
Keywords: ozone, concentration, air mass transport backward
trajectories, long-range scale, North America
PACS: 92.70.Cp, 92.60.hf, 92.60.Sz
ORO MASIŲ TOLIMŲJŲ PERNAŠŲ ĮTAKA
OZONO KONCENTRACIJAI PREILOS STOTYJE
S. Byčenkienė, R. Girgždienė
Fizikos institutas, Vilnius, Lietuva
Remiantis Preilos stotyje išmatuotų pažemio
ozono koncentracijų ir oro masių atgalinių trajektorijų analize,
įvertintos vidutinės ozono koncentracijos oro masėse, atėjusiose
iš Šiaurės Amerikos. Analizuotos 1997 metų oro masių 10 dienų
judėjimo atgalinės trajektorijos suskirstytos į dvi dideles grupes
pagal teritorijas („užterštas” ir „neužterštas” sektorius), kurias
kirto oro masės. Vėliau kiekviena grupė surūšiuota į pogrupius
pagal oro masių slinkimo kryptį, aukštį ir sezonus. Didžiausias
oro masių, atėjusių iš Šiaurės Amerikos į Preilą, pasikartojimas
buvo vėlyvą rudenį–žiemą, tuo tarpu rugpjūčio mėnesį tokių atvejų
nebuvo užregistruota. Įvertinti ozono koncentracijų pokyčiai
atskirais sezonais skirtingiems oro masių trajektorijų pogrupiams.
Nustatyta, kad visais metų laikais, išskyrus vasaros laikotarpį,
ozono koncentracijų vidurkiai (rudenį 58±8, žiemą 46±20 ir
pavasarį 46±20 μg m−3) grupėje iš „neužteršto”
sektoriaus buvo didesni negu iš „užteršto” sektoriaus (43±16,
43±20, 42±20 μg m−3). Didžiausiomis vidutinėmis
ozono koncentracijomis (78±12 μg m−3)
pasižymėjo oro masės iš „neužteršto” sektoriaus, judėjusios žiemą
virš 2 km aukštyje prieš nusileidžiant į Preilą. Oro masių atėjimo
nuo Šiaurės Amerikos laikotarpiais virš Lietuvos vyravo ciklonai
arba silpnai išreikšti žemo slėgio laukai (65% visų atvejų).
Tarpkontinentinės tolimosios pernašos galėjo turėti įtakos ozono
koncentracijos lygiui Preilos stotyje atskirais 1997 metų
atvejais, t. y., galėjo padidinti arba sumažinti koncentraciją iki
10 μg m−3.
References / Nuorodos
[1] J. Staehelin, J. Thudium, R. Buehlfr, and A. Volz-Thomas, Trends
in surface ozone concentrations at Arosa (Switzerland), Atmos.
Environ. 28, 75–87 (1994),
http://dx.doi.org/10.1016/1352-2310(94)90024-8
[2] S.J. Olmans, A.S. Lefohn, H.E. Scheel, J.M. Harris, H. Levy II,
I.E. Galbally, E.-G. Brunke, C.P. Meyer, J.A. Lathrop, B.J. Johnson,
D.S. Shadwick, E. Cuevas, F.J. Schmidlin, D.W. Tarasick, H. Claude,
J.B. Kerr, O. Uchino, and V. Mohnen, Trends of ozone in the
troposphere, Geophys. Res. Lett. 25, 139–142 (1998),
http://dx.doi.org/10.1029/97GL03505
[3] J.A. Logan, I.A. Megretskaia, A.J. Miller et al., Trends in the
vertical distribution of ozone: A comparison of two analyses of
ozonesonde data, J. Geophys. Res. 104, 26,373–26,399 (1999),
http://dx.doi.org/10.1029/1999JD900300
[4] D.D. Parrish, J.S. Holloway, M. Trainer, P.C. Murphy, G.L.
Forbes, and F.C. Fehsenfeld, Export of North American ozone
pollution to the North Atlantic Ocean, Science 259,
1436–1439 (1993),
http://dx.doi.org/10.1126/science.259.5100.1436
[5] D.D. Parrish, M. Trainer, J.S. Holloway, J.E. Yee, M.S.
Warshawsky, F.C. Fehsenfeld, G.L. Forbes, and J.L. Moody,
Relationships between ozone and carbon monoxide at surface sites in
the North Atlantic region, J. Geophys. Res. 103,
13,357–13,376 (1998),
http://dx.doi.org/10.1029/98JD00376
[6] S. Sandroni, D. Anfossi, and S. Viarenzo, Surface ozone levels
at the end of nineteenth century in South America, J. Geophys. Res.
97, 2535–2539 (1992),
http://dx.doi.org/10.1029/91JD02660
[7] A. Marenco, H. Gouget, P. Nedelec, and J.P. Pages, Evidence of a
long-term increase in tropospheric ozone from Pic du Midi data
series, Consequences: Positive radiative forcing, J. Geophys. Res. 99,
16,617–16,632 (1994),
http://dx.doi.org/10.1029/94JD00021
[8] E.A. Donnell, D.J. Fish, E.M. Dicks, and A.J. Thorpe, Mechanisms
for pollutant transport between the boundary layer and free
troposphere, J. Geophys. Res. 106, 7847–7856 (2001),
http://dx.doi.org/10.1029/2000JD900730
[9] J.T. Merrill and J.L. Moody, Synoptic meteorology and transport
during the North Atlantic Regional Experiment (NARE) intensive:
Overview, J. Geophys. Res. 101, 28,903–28,921 (1996),
http://dx.doi.org/10.1029/96JD00097
[10] C.M. Benkovitz, T. Scholtz, J. Pacyna, L. Tarrasn, J. Dignon,
E. Voldner, P.A. Spiro, J.A. Logan, and T.E. Graedel, Global
inventories of anthropogenic emissions of SO2 and NOx,
J. Geophys. Res. 101, 29,239–29,253 (1996),
http://dx.doi.org/10.1029/96JD00126
[11] O. Wild, K.S. Law, D.S. McKenna, B.J. Bandy, S.A. Penkett, and
J.A. Pyle, Photochemical trajectory modeling studies of the North
Atlantic region during August 1993, J. Geophys. Res. 101,
29,269–29,288 (1996),
http://dx.doi.org/10.1029/96JD00837
[12] C. Forster, U. Wandinger, G. Wotawa, P. James, I. Mattis, D.
Althausen, P. Simmonds, S. O'Doherty, S. Jennings, C. Kleefeld, J.
Schnieder, T. Trickl, S. Kreipl, H. Jager, and A. Stohl, Transport
of Canadian forest fire emissions to Europe, J. Geophys. Res. 106,
22,887–22,906 (2001),
http://dx.doi.org/10.1029/2001JD900115
[13] S.J. Oltmans and H. Levy II, Surface ozone measurements from a
global network, Atmos. Environ. 28, 9–24 (1994),
http://dx.doi.org/10.1016/1352-2310(94)90019-1
[14] Q. Li, D.J. Jacob, I. Bey, P.I. Palmer, B.N. Duncan, B.D. Fold,
R.V. Martin, A.M. Fiore, R.M. Yantosca, D.D. Parrish, P.G. Simmonds,
and S. Oltmans, Transatlantic transport of pollution and its effects
on surface ozone in Europe and North America, J. Geophys. Res. 107,
4166 (2002),
http://dx.doi.org/10.1029/2001JD001422
[15] A. Stohl, The FLEXTRA Trajectory Model Version 3.0.User
Guide,
http://www.forst.tu-muenchen.de/EXT/LST/METEO/stohl/flextra/flextra3.html
[16] A. Stohl and T. Trickl, A textbook example of long-range
transport: Simultaneous observation of ozone maxima of stratospheric
and North American origin in the free troposphere over Europe, J.
Geophys. Res. 104, 30,445–30,462 (1999),
http://dx.doi.org/10.1029/1999JD900803
[17] A.I. Prados, R.R. Dickerson, B.G. Doddridge, P.A. Milne, J.L.
Moody, and J.T. Merrill, Transport of ozone and pollutants from
North America to the North Atlantic Ocean during the 1996 Atmosphere
/ Ocean Chemistry Experiment (AEROCE) intensive, J. Geophys. Res. 104,
26,219–26,233 (1999),
http://dx.doi.org/10.1029/1999JD900444
[18] P. James, A. Stohl, C. Forster, S. Eckhardt, P. Seibert, and A.
Frank, A 15-year climatology of stratosphere-troposphere exchange
with a Lagrangian particle dispersion model 2. Mean climate and
seasonal variability, J. Geophys. Res. 108, 8522,
(2003),
http://dx.doi.org/10.1029/2002JD002639
[19] A. Stohl, Computation, accuracy and applications of
trajectories – A review and bibliography, Atmos. Environ. 32,
947–966 (1998),
http://dx.doi.org/10.1016/S1352-2310(97)00457-3
[20] A. Stohl, A one-year Lagrangian “climatology” of airstreams in
the Northern Hemisphere troposphere and lowermost stratosphere, J.
Geophys. Res. 106, 7263–7279 (2001),
http://dx.doi.org/10.1029/2000JD900570
[21] H. Sodemann, A new software tool for air mass trajectory
visualization and exploration, in: Proceedings from the
EUROTRAC-2 Symposium, eds. P.M. Midgley and M. Reuther (2002)
[22] A. Stohl and P. Seibert, Accuracy of trajectories as determined
from the conservation of meteorological tracers, Q. J. Roy. Met.
Soc. 124, 1465–1484 (1998),
http://dx.doi.org/10.1256/smsqj.54906
[23] The FLEXTRA and FLEXPART homepage by Andreas Stohl and others,
http://zardoz.nilu.no/∼andreas/flextra+flexpart.html
[24] User Guide to ECMWF Products 2.1, Meteorological
Bulletin M3.2 (ECMWF, 1995)
[25] Trajectory filtering, in: PLOTRA A software For Air Mass
Trajectory Data Exploration and Visualization (User manual by
H. Sodemann), pp. 25–27
[26] R. Girgzdiene and A. Girgzdys, The influence of wind parameters
on the ozone concentration variation on the Baltic Sea coast,
Environmental Chem. Phys. 23(3–4), 112–117 (2001)