[PDF]    http://dx.doi.org/10.3952/lithjphys.46213

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 251–259 (2006)


INFLUENCE OF AIR MASS LONG-RANGE TRANSPORT ON OZONE CONCENTRATION AT PREILA SITE (LITHUANIA)
S. Byčenkienė and R. Girgždienė
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: bycenkiene@ar.fi.lt

Received 5 January 2006

Ground-level ozone measurement data and air mass backward trajectories were used to determine the influence of the long-range transport on the ozone level. A cluster algorithm was implemented to analyse the backward trajectories of air masses arriving from North America to the Preila site located on the eastern coast of the Baltic Sea. The 10-day air mass backward trajectories were clustered and grouped according to season, travelled way, and height over the surface before arrival. Dominant air mass transport from North America was identified in the late autumn–winter (up to 69% of total events). The air masses from the “unpolluted” cluster in all seasons, except summertime, showed slightly higher ozone concentrations than those from the “polluted” cluster. The highest ozone concentration of 78±12 μg m−3 was found in air masses that travelled at the >2 km height above the surface from the “unpolluted” cluster during a winter period. It was established that the transport of air masses from North America was mainly associated with cyclones (65%). The change in the ozone level at the Preila site was up to ±10 μg m−3 during the episodes when the transport of air masses from North America was detected.
Keywords: ozone, concentration, air mass transport backward trajectories, long-range scale, North America
PACS: 92.70.Cp, 92.60.hf, 92.60.Sz


ORO MASIŲ TOLIMŲJŲ PERNAŠŲ ĮTAKA OZONO KONCENTRACIJAI PREILOS STOTYJE
S. Byčenkienė, R. Girgždienė
Fizikos institutas, Vilnius, Lietuva

Remiantis Preilos stotyje išmatuotų pažemio ozono koncentracijų ir oro masių atgalinių trajektorijų analize, įvertintos vidutinės ozono koncentracijos oro masėse, atėjusiose iš Šiaurės Amerikos. Analizuotos 1997 metų oro masių 10 dienų judėjimo atgalinės trajektorijos suskirstytos į dvi dideles grupes pagal teritorijas („užterštas” ir „neužterštas” sektorius), kurias kirto oro masės. Vėliau kiekviena grupė surūšiuota į pogrupius pagal oro masių slinkimo kryptį, aukštį ir sezonus. Didžiausias oro masių, atėjusių iš Šiaurės Amerikos į Preilą, pasikartojimas buvo vėlyvą rudenį–žiemą, tuo tarpu rugpjūčio mėnesį tokių atvejų nebuvo užregistruota. Įvertinti ozono koncentracijų pokyčiai atskirais sezonais skirtingiems oro masių trajektorijų pogrupiams. Nustatyta, kad visais metų laikais, išskyrus vasaros laikotarpį, ozono koncentracijų vidurkiai (rudenį 58±8, žiemą 46±20 ir pavasarį 46±20 μg m−3) grupėje iš „neužteršto” sektoriaus buvo didesni negu iš „užteršto” sektoriaus (43±16, 43±20, 42±20 μg m−3). Didžiausiomis vidutinėmis ozono koncentracijomis (78±12 μg m−3) pasižymėjo oro masės iš „neužteršto” sektoriaus, judėjusios žiemą virš 2 km aukštyje prieš nusileidžiant į Preilą. Oro masių atėjimo nuo Šiaurės Amerikos laikotarpiais virš Lietuvos vyravo ciklonai arba silpnai išreikšti žemo slėgio laukai (65% visų atvejų). Tarpkontinentinės tolimosios pernašos galėjo turėti įtakos ozono koncentracijos lygiui Preilos stotyje atskirais 1997 metų atvejais, t. y., galėjo padidinti arba sumažinti koncentraciją iki 10 μg m−3.


References / Nuorodos


[1] J. Staehelin, J. Thudium, R. Buehlfr, and A. Volz-Thomas, Trends in surface ozone concentrations at Arosa (Switzerland), Atmos. Environ. 28, 75–87 (1994),
http://dx.doi.org/10.1016/1352-2310(94)90024-8
[2] S.J. Olmans, A.S. Lefohn, H.E. Scheel, J.M. Harris, H. Levy II, I.E. Galbally, E.-G. Brunke, C.P. Meyer, J.A. Lathrop, B.J. Johnson, D.S. Shadwick, E. Cuevas, F.J. Schmidlin, D.W. Tarasick, H. Claude, J.B. Kerr, O. Uchino, and V. Mohnen, Trends of ozone in the troposphere, Geophys. Res. Lett. 25, 139–142 (1998),
http://dx.doi.org/10.1029/97GL03505
[3] J.A. Logan, I.A. Megretskaia, A.J. Miller et al., Trends in the vertical distribution of ozone: A comparison of two analyses of ozonesonde data, J. Geophys. Res. 104, 26,373–26,399 (1999),
http://dx.doi.org/10.1029/1999JD900300
[4] D.D. Parrish, J.S. Holloway, M. Trainer, P.C. Murphy, G.L. Forbes, and F.C. Fehsenfeld, Export of North American ozone pollution to the North Atlantic Ocean, Science 259, 1436–1439 (1993),
http://dx.doi.org/10.1126/science.259.5100.1436
[5] D.D. Parrish, M. Trainer, J.S. Holloway, J.E. Yee, M.S. Warshawsky, F.C. Fehsenfeld, G.L. Forbes, and J.L. Moody, Relationships between ozone and carbon monoxide at surface sites in the North Atlantic region, J. Geophys. Res. 103, 13,357–13,376 (1998),
http://dx.doi.org/10.1029/98JD00376
[6] S. Sandroni, D. Anfossi, and S. Viarenzo, Surface ozone levels at the end of nineteenth century in South America, J. Geophys. Res. 97, 2535–2539 (1992),
http://dx.doi.org/10.1029/91JD02660
[7] A. Marenco, H. Gouget, P. Nedelec, and J.P. Pages, Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series, Consequences: Positive radiative forcing, J. Geophys. Res. 99, 16,617–16,632 (1994),
http://dx.doi.org/10.1029/94JD00021
[8] E.A. Donnell, D.J. Fish, E.M. Dicks, and A.J. Thorpe, Mechanisms for pollutant transport between the boundary layer and free troposphere, J. Geophys. Res. 106, 7847–7856 (2001),
http://dx.doi.org/10.1029/2000JD900730
[9] J.T. Merrill and J.L. Moody, Synoptic meteorology and transport during the North Atlantic Regional Experiment (NARE) intensive: Overview, J. Geophys. Res. 101, 28,903–28,921 (1996),
http://dx.doi.org/10.1029/96JD00097
[10] C.M. Benkovitz, T. Scholtz, J. Pacyna, L. Tarrasn, J. Dignon, E. Voldner, P.A. Spiro, J.A. Logan, and T.E. Graedel, Global inventories of anthropogenic emissions of SO2 and NOx, J. Geophys. Res. 101, 29,239–29,253 (1996),
http://dx.doi.org/10.1029/96JD00126
[11] O. Wild, K.S. Law, D.S. McKenna, B.J. Bandy, S.A. Penkett, and J.A. Pyle, Photochemical trajectory modeling studies of the North Atlantic region during August 1993, J. Geophys. Res. 101, 29,269–29,288 (1996),
http://dx.doi.org/10.1029/96JD00837
[12] C. Forster, U. Wandinger, G. Wotawa, P. James, I. Mattis, D. Althausen, P. Simmonds, S. O'Doherty, S. Jennings, C. Kleefeld, J. Schnieder, T. Trickl, S. Kreipl, H. Jager, and A. Stohl, Transport of Canadian forest fire emissions to Europe, J. Geophys. Res. 106, 22,887–22,906 (2001),
http://dx.doi.org/10.1029/2001JD900115
[13] S.J. Oltmans and H. Levy II, Surface ozone measurements from a global network, Atmos. Environ. 28, 9–24 (1994),
http://dx.doi.org/10.1016/1352-2310(94)90019-1
[14] Q. Li, D.J. Jacob, I. Bey, P.I. Palmer, B.N. Duncan, B.D. Fold, R.V. Martin, A.M. Fiore, R.M. Yantosca, D.D. Parrish, P.G. Simmonds, and S. Oltmans, Transatlantic transport of pollution and its effects on surface ozone in Europe and North America, J. Geophys. Res. 107, 4166 (2002),
http://dx.doi.org/10.1029/2001JD001422
[15] A. Stohl, The FLEXTRA Trajectory Model Version 3.0.User Guide,
http://www.forst.tu-muenchen.de/EXT/LST/METEO/stohl/flextra/flextra3.html
[16] A. Stohl and T. Trickl, A textbook example of long-range transport: Simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe, J. Geophys. Res. 104, 30,445–30,462 (1999),
http://dx.doi.org/10.1029/1999JD900803
[17] A.I. Prados, R.R. Dickerson, B.G. Doddridge, P.A. Milne, J.L. Moody, and J.T. Merrill, Transport of ozone and pollutants from North America to the North Atlantic Ocean during the 1996 Atmosphere / Ocean Chemistry Experiment (AEROCE) intensive, J. Geophys. Res. 104, 26,219–26,233 (1999),
http://dx.doi.org/10.1029/1999JD900444
[18] P. James, A. Stohl, C. Forster, S. Eckhardt, P. Seibert, and A. Frank, A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model 2. Mean climate and seasonal variability, J. Geophys. Res. 108, 8522,  (2003),
http://dx.doi.org/10.1029/2002JD002639
[19] A. Stohl, Computation, accuracy and applications of trajectories – A review and bibliography, Atmos. Environ. 32, 947–966 (1998),
http://dx.doi.org/10.1016/S1352-2310(97)00457-3
[20] A. Stohl, A one-year Lagrangian “climatology” of airstreams in the Northern Hemisphere troposphere and lowermost stratosphere, J. Geophys. Res. 106, 7263–7279 (2001),
http://dx.doi.org/10.1029/2000JD900570
[21] H. Sodemann, A new software tool for air mass trajectory visualization and exploration, in: Proceedings from the EUROTRAC-2 Symposium, eds. P.M. Midgley and M. Reuther (2002)
[22] A. Stohl and P. Seibert, Accuracy of trajectories as determined from the conservation of meteorological tracers, Q. J. Roy. Met. Soc. 124, 1465–1484 (1998),
http://dx.doi.org/10.1256/smsqj.54906
[23] The FLEXTRA and FLEXPART homepage by Andreas Stohl and others,
http://zardoz.nilu.no/∼andreas/flextra+flexpart.html
[24] User Guide to ECMWF Products 2.1, Meteorological Bulletin M3.2 (ECMWF, 1995)
[25] Trajectory filtering, in: PLOTRA A software For Air Mass Trajectory Data Exploration and Visualization (User manual by H. Sodemann), pp. 25–27
[26] R. Girgzdiene and A. Girgzdys, The influence of wind parameters on the ozone concentration variation on the Baltic Sea coast, Environmental Chem. Phys. 23(3–4), 112–117 (2001)