[PDF]
http://dx.doi.org/10.3952/lithjphys.46217
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 131–145 (2006)
Review
NEW TRENDS IN TERAHERTZ
ELECTRONICS
V. Tamošiūnasa, D. Seliutaa, A.
Juozapavičiusa, E. Širmulisa, G. Valušisa,
A. El Fatimyb, Y. Mezianib, N. Dyakonovab,
J. Lusakowskib, W. Knapb, A. Lisauskasc,
H.G. Roskosc, and K. Köhlerd
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: valusis@pfi.lt
bGES-UMR 5650 CNRS Universite Montpellier 2,
34900 Montpellier, France
cPhysikalisches Institut, Johann Wolfgang
Goethe-Universität, Max-von-Laue-Strasse 1, D-60438 Frankfurt /
M, Germany
dFraunhofer-Institut für Angewandte
Festkörperphysik, Tullastr. 72, D-79108 Freiburg, Germany
Received 14 March 2006
Dedicated to academician Juras Požela on the occasion of his
80th birthday
The rapid evolution of terahertz (THz)
applications in imaging, material diagnostics, communication
systems, etc. stimulates an intensive search for new solutions in
design and fabrication of compact emitters and receivers. The
particular place of THz range in the electromagnetic spectrum –
between microwaves and the infrared one – defines the requirement
to merge together different concepts in the development of devices
for THz electronics needs. The present overview covers several new
topics illustrating unprecedented possibilities of modern
semiconductor nanotechnology to realize innovative compact devices
for terahertz electronics. We describe operation principles of
quantum cascade lasers (QCLs) giving special emphasis to the
specifics of THz quantum cascade devices and obstacles in their
development. As an illustration of successful confluence of
different physical approaches, we report on semiconductor
nanostructure-based THz sensors – nanometric field effect
transistors and asymmetric bow-tie diodes containing
two-dimensional electron gas – which can successfully be employed
for selective / broadband detection of the THz radiation.
Keywords: THz frequencies, quantum cascade lasers,
two-dimensional electron gas, nanometric field effect transistors,
asymmetric bow-tie diodes, plasma waves, non-uniform electron
heating
PACS: 72.30.+q, 73,21.Fg, 73.61.Ey, 73,63.Hs
NAUJOS KRYPTYS TERAHERCINĖJE
ELEKTRONIKOJE
V. Tamošiūnasa, D. Seliutaa, A.
Juozapavičiusa, E. Širmulisa, G. Valušisa,
A. El Fatimyb, Y. Mezianib, N. Dyakonovab,
J. Lusakowskib, W. Knapb, A. Lisauskasc,
H.G. Roskosc,K. Köhlerd
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
b2-as Monpeljė universitetas, Monpeljė,
Prancūzija
cJohano Volfgango Gėtės universitetas,
Frankfurtas prie Maino, Vokietija
dFraunhoferio taikomosios kietojo kūno fizikos
institutas, Freiburgas, Vokietija
Apžvelgiamos trys naujos terahercinės
elektronikos kryptys, susijusios su mažų matmenų prietaisų kūrimu,
pasitelkiant šiuolaikinės puslaidininkinės nanotechnologijos
galimybes.
Terahercinių (1 THz yra 1012 Hz) dažnių ruožas,
apimantis dažnių juostą nuo 0,1 iki 10 THz, elektromagnetinių
bangų skalėje glūdi tarp mikrobangų ir infraraudonosios srities,
t. y. tarp klasikiniaiskrūvininkų pernašos dėsniais aprašomos
elektronikos ir kvantinės mechanikos taisyklėmis grindžiamos
fotonikos. Taigi, ši sritis yra tarsi savotiškas „tiltas”,
jungiantis klasikinį ir kvantinį fizikos pasaulius, ir būtent tai
daro terahercinės elektronikos prietaisų kūrimą gana savitą ir
subtilų, nes reikia ieškoti labai savitų fizikinių ir
technologinių sprendimų, talpinančių ir derinančių gana skirtingas
fizikines koncepcijas.
Pateikiami ir aprašyti trys tokių netradicinių sprendimų
pavyzdžiai, sukurti panaudojant šiuolaikinės molekulinės
epitaksijos, fotolitografijos bei elektroninės litografijos
pasiekimus. Pirmasis jų, kvantinis kaskadinis lazeris, skirtas THz
spinduliuotės emisijai, jungia savyje kvantmechaniniais
skaičiavimais pagrįstą sluoksnių sandarą bei bangolaidžių fizikos
principais paremtą emisijos modų sklidimo reguliavimą bei jų
nuostolių rezonatoriuje mažinimą. Antrasis prietaisas –
puslaidininkinis lauko tranzistorius su submikroninio ilgio
sklende – yra tarsi plazmos fizikos bei puslaidininkių
nanostruktūrų fizikos „lydinys”; pademonstruota, jog jis gali būti
sėkmingai pritaikomas atrankiai (selektyviai) THz spinduliuotės
detekcijai, kurios dažninė charakteristika gali būti keičiama
sklendės įtampa. Trečiasis įtaisas – peteliškės formos asimetrinis
diodas su dvimačiais elektronais – „atstovauja” puslaidininkių
nanostruktūrų fizikos ir antenos principų „sujungimo” koncepcijai
ir yra skirtas plačiajuostei GHz–THz dažnių ruožo detekcijai
kambario temperatūroje.
Taip pat pateikiami bei palyginami ir kiti naujausi įvairiais
fizikiniais principais veikiančių THz dažnių ruožo kietakūnių
emiterių bei jutiklių duomenys.
References / Nuorodos
[1] J. Požela, Physics of High-Speed Transistors (Vilnius,
Mokslas, 1989) [in Russian]
[2] A.Y. Cho and J.R. Arthur, Molecular beam epitaxy, Prog. Solid
State Chem. 10, 157–191 (1975),
http://dx.doi.org/10.1016/0079-6786(75)90005-9
[3] J. Faist, F. Cappaso, D.L. Sivco, C. Sirtori, A.L. Hutchinson,
and A.Y. Cho, Quantum cascade laser, Science 264, 553–556
(1994),
http://dx.doi.org/10.1126/science.264.5158.553
[4] F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl,
T.L. Myers, M.S. Taubman, R.M. Williams, C.G. Bethea, K.
Unterrainer, H.Y. Hwang, D.L. Sivco, A.Y. Cho, A.M. Sergent, H.C.
Liu, and E.A. Whittaker, Quantum cascade lasers: Ultrahigh–speed
operation, optical wireless communication, narrow linewidth, and
far–infrared emission, IEEE J. Quantum Electron. 38, 511-532
(2002),
http://dx.doi.org/10.1109/JQE.2002.1005403
[5] J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S.
Blaser, Bound-to-continuum and two-photon resonance quantum cascade
lasers for high duty cycle, high-temperature operation, IEEE J.
Quantum Electron. 38, 533–546 (2002),
http://dx.doi.org/10.1109/JQE.2002.1005404
[6] J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, and F. Capasso,
Quantum cascade disk lasers, Appl. Phys. Lett. 69, 2456–2458
(1996),
http://dx.doi.org/10.1063/1.117496
[7] C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, A. Douglas
Stone, J. Faist, D.L. Sivco, and A.Y. Cho, High-power directional
emission from microlasers with chaotic resonators, Science 280,
1556–1564 (1998),
http://dx.doi.org/10.1126/science.280.5369.1556
[8] A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D.L.
Sivco, and A.Y. Cho, Single-mode surface-plasmon laser, Appl. Phys.
Lett. 76, 2164–2166 (2000),
http://dx.doi.org/10.1063/1.126183
[9] R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C.F.
Gmachl, D.M.Tennant, A.M. Sergent, D.L. Sivco, A.Y. Cho, and F.
Capasso, Quantum cascade surface-emitting photonic crystal laser,
Science 302, 1374–1377 (2003),
http://dx.doi.org/10.1126/science.1090561
[10] R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfeld,
A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, Terahertz
semiconductor heterostructure laser, Nature (London) 417,
156–159 (2002),
http://dx.doi.org/10.1038/417156a
[11] B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J.L. Reno,
3.4-THz quantum cascade laser based on LO-phonon scattering for
depopulation, Appl. Phys. Lett. 82, 1015–1017 (2003),
http://dx.doi.org/10.1063/1.1554479
[12] C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D.L. Sivco, A.L.
Hutchinson, and A.Y. Cho, Long-wavelength (8–11.5 μm)
semiconductor lasers with waveguides based on surface plasmons, Opt.
Lett. 23, 1366–1368 (1998),
http://dx.doi.org/10.1364/OL.23.001366
[13] B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J.L. Reno,
3.0 THz (λ = 100 μm) quantum-cascade laser using
metal waveguide for mode confinement, Appl. Phys. Lett. 83,
2124–2126 (2003),
http://dx.doi.org/10.1063/1.1611642
[14] B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, Resonant-phonon
terahertz quantum-cascade laser operating at 2.1 THz (λ ∼ 141
μm), Electron. Lett. 40, 431–432 (2004),
http://dx.doi.org/10.1049/el:20040300
[15] S. Kumar, B.S. Williams, S. Kohen, Q. Hu, and J.L. Reno,
Continuous-wave operation of terahertz quantum-cascade lasers above
liquid-nitrogen temperature, Appl. Phys. Lett. , 2494–2496 (2004),
http://dx.doi.org/10.1063/1.169509984
[16] B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, Operation of
terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117
K in continuous-wave mode, Opt. Express 13, 3331–3339 (2005),
http://dx.doi.org/10.1364/OPEX.13.003331
[17] G. Fasching, A. Benz, K. Unterrainer, R. Zobl, A.M. Andrews, T.
Roch, W. Schrenk, and G. Strasser, Terahertz microcavity
quantum-cascade lasers, Appl. Phys. Lett. 87, 211112-1–3
(2005),
http://dx.doi.org/10.1063/1.2136222
[18] V. Tamošiūnas, R. Zobl, J. Ulrich, K. Unterrainer, R.
Colombelli, C. Gmachl, K. West, L. Pfeiffer, and F. Capasso,
Terahertz quantum cascade lasers in a magnetic field, Appl. Phys.
Lett. 83, 3873–3875 (2003),
http://dx.doi.org/10.1063/1.1626018
[19] D. Hofstetter, M. Beck, and J. Faist, Quantum-cascade-laser
structures as photodetectors, Appl. Phys. Lett. 81,
2683–2685 (2002),
http://dx.doi.org/10.1063/1.1512954
[20] M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E.
Linfield, D. Ritchie, and G. Davies, Terahertz range quantum well
infrared photodetector, Appl. Phys. Lett. 84, 475–477
(2004),
http://dx.doi.org/10.1063/1.1641165
[21] H. Luo, H.C. Liu, C.Y. Song, and Z.R. Wasilewski,
Background-limited terahertz quantum-well photodetector, Appl. Phys.
Lett. 86, 231103-1–3 (2005),
http://dx.doi.org/10.1063/1.1947377
[22] M. Dyakonov and M.S. Shur, Shallow water analogy for a
ballistic field effect transitor: New mechanism of plasma wave
generation by dc current, Phys. Rev. Lett. 71, 2465–2468
(1993),
http://dx.doi.org/10.1103/PhysRevLett.71.2465
[23] W. Knap, Y. Deng, S. Rumyantsev, J.-Q. Lü, M.S. Shur, C.A.
Saylor, and L.C. Brunel, Resonant detection of subterahertz
radiation by plasma waves in a submicron field-effect transistor,
Appl. Phys. Lett. 80, 3433–3435 (2002),
http://dx.doi.org/10.1063/1.1473685
[24] W. Knap, Y. Deng, S. Rumyantsev, and M.S. Shur, Resonant
detection of subterahertz and terahertz radiation by plasma waves in
submicron field-effect transistors, Appl. Phys. Lett. 81,
4637–4639 (2002),
http://dx.doi.org/10.1063/1.1525851
[25] W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lü, R.
Gaska, M.S. Shur, G. Simin, X. Hu, M. Asif Khan, C.A. Saylor, and
L.C. Brunel, Nonresonant detection of terahertz radiation in field
effect transistors, J. Appl. Phys. 91, 9346–9353 (2002),
http://dx.doi.org/10.1063/1.1468257
[26] X.G. Peralta, S.J. Allen, M.C. Wanke, N.E. Harff, J.A. Simmons,
M.P. Lilly, J.L. Reno, P.J. Burke, and J.P. Eisenstein, Terahertz
photoconductivity and plasmon modes in double-quantum-well
field-effect transistors, Appl. Phys. Lett. 81, 1627–1629
(2002),
http://dx.doi.org/10.1063/1.1497433
[27] E.A. Shaner, M. Lee, M.C. Wanke, A.D. Grine, J.L. Reno, and
S.J. Allen, Single-quantum-well grating-gated terahertz plasmon
detectors, Appl. Phys. Lett. 87, 193507-1–3 (2005),
http://dx.doi.org/10.1063/1.2128057
[28] Y.M. Meziani, J. Lusakowski, N. Dyakonova, W. Knap, D. Seliuta,
E. Širmulis, J. Devenson, G. Valušis, F. Boeuf, and T. Skotnicki,
Non resonant response of terahertz radiation by submicron CMOS
transistors, IEICE Trans. Electronics (2006, in press),
http://dx.doi.org/10.1093/IETELE/E89-C.7.993
[29] F. Teppe, W. Knap, D. Veksler, M.S. Shur, A.P. Dmitriev, V.Yu.
Kachorovskii, and S. Rumyantsev, Room-temperature plasma waves
resonant detection of sub-terahertz radiation by nanometer
field-effect transistor, Appl. Phys. Lett. 87, 052107-1–3
(2005),
http://dx.doi.org/10.1063/1.2005394
[30] F. Teppe, D. Veksler, V.Yu. Kachorovskii, A.P. Dmitriev, X.
Xie, X.-C. Zhang, S. Rumyantsev, W. Knap, and M.S. Shur, Plasma wave
resonant detection of femtosecond pulsed terahertz radiation by a
nanometer field-effect transistor, Appl. Phys. Lett. 87,
022102-1–3 (2005),
http://dx.doi.org/10.1063/1.1952578
[31] W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V.V.
Popov, and M.S. Shur, Terahertz emission by plasma waves in 60 nm
gate high electron mobility transistors, Appl. Phys. Lett. 84,
2331–2333 (2004),
http://dx.doi.org/10.1063/1.1689401
[32] J. Lusakowski, W. Knap, N. Dyakonova, L. Varani, J. Mateos, T.
Gonzalez, Y. Roelens, S. Bollaert, and A. Cappy, Voltage tunable
terahertz emission from a ballistic nanometer InGaAs / InAlAs
transistor, J. Appl. Phys. 97, 064307-1–7 (2005).
http://dx.doi.org/10.1063/1.1861140
[33] Y. Deng, R. Kersting, J. Xu, R. Ascazubi, X.C. Zhang, M.S.
Shur, R. Gaska, G.S. Simin, M.A. Khan, and V. Ryzhii, Millimeter
wave emission from GaN high electron mobility transistor, Appl.
Phys. Lett. 84, 70–72 (2004),
http://dx.doi.org/10.1063/1.1638625
[34] M. Dyakonov and M. Shur, Detection, mixing, and frequency
multiplication of terahertz radiation by two-dimensional electronic
fluid, IEEE Trans. Electron Devices 43, 380–387 (1996),
http://dx.doi.org/10.1109/16.485650
[35] A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G.
Valušis, A. Shchepetov, V. Roelens, S. Bollaert, A. Cappy, and S.
Rumyantsev, Resonant and voltage-tunable terahertz detection in
InGaAs / InP nanometric transistors, Appl. Phys. Lett. (submitted),
http://dx.doi.org/10.1063/1.2358816
[36] D.B. Rutledge and M.S. Muha, Imaging antenna arrays, IEEE
Trans. Antennas Propag. 30, 535–540 (1982),
http://dx.doi.org/10.1109/TAP.1982.1142856
[37] R.C. Compton, R.C. McPhedran, Z. Popovic, G.M. Rebeiz, P.P.
Tong, and D.B. Rutledge, Bow-tie antennas on a dielectric
half-space: Theory and experiment, IEEE Trans. Antennas Propag. 35,
622–630 (1987),
http://dx.doi.org/10.1109/TAP.1987.1144162
[38] H. Drexler, J.S. Scott, S.J. Allen, K.L. Campman, and A.C.
Gossard, Photon-assisted tunneling in a resonant tunneling diode:
Stimulated emission and absorption in the THz range, Appl. Phys.
Lett. 67, 2816–2818 (1995),
http://dx.doi.org/10.1063/1.114794
[39] A.J. Kreisler and A. Gaugue, Recent progress in
high-temperature superconductor bolometric detectors: From the
mid-infrared to the far-infrared (THz) range, Supercond. Sci.
Technol. 13, 1235–1245 (2000),
http://dx.doi.org/10.1088/0953-2048/13/8/321
[40] Y.C. Shen, P.C. Upadhya, H.E. Beere, E.H. Linfield, A.G.
Davies, I.S. Gregory, C. Baker, W.R. Tribe, and M.J. Evans,
Generation and detection of ultrabroadband terahertz radiation using
photoconductive emitters and receivers, Appl. Phys. Lett. 85,
164–166 (2004),
http://dx.doi.org/10.1063/1.1768313
[41] K. Hirakawa and H. Sakaki, Mobility of the two-dimensional
electron gas at selectively doped n-type AlxGa1-xAs/GaAs
heterojunctions with controlled electron concentrations, Phys. Rev.
B 33, 8291–8303 (1986),
http://dx.doi.org/10.1103/PhysRevB.33.8291
[42] A. Juozapavičius, L. Ardaravičius, A. Sužiedėlis, A. Kozič, J.
Gradauskas, J. Kundrotas, D. Seliuta, E. Širmulis, S. Ašmontas, G.
Valušis, H.G. Roskos, and K. Köhler, Microwave sensor based on
modulation-doped GaAs/AlGaAs structure, Semicond. Sci. Technol. 19,
S436–S439 (2004),
http://dx.doi.org/10.1088/0268-1242/19/4/143
[43] A. Sužiedėlis, S. Ašmontas, J. Gradauskas, G. Valušis, and H.G.
Roskos, Giga- and terahertz frequency band detector based on an
asymmetrically-necked n–n+-GaAs planar
structure, J. Appl. Phys. 93, 3034–3038 (2003),
http://dx.doi.org/10.1063/1.1536024
[44] D. Seliuta, E. Širmulis, V. Tamošiūnas, S. Balakauskas, S.
Ašmontas, A. Sužiedėlis, J. Gradauskas, G. Valušis, A. Lisauskas,
H.G. Roskos, and K. Köhler, Detection of terahertz/sub-terahertz
radiation by asymmetrically-shaped 2DEG layers, Electron. Lett. 40,
631–632 (2004),
http://dx.doi.org/10.1049/el:20040412
[45] G. Valušis, D. Seliuta, V. Tamošiūnas, E. Širmulis, S.
Balakauskas, J. Gradauskas, A. Sužiedėlis, S. Ašmontas, T.
Anbinderis, A. Narkūnas, I. Papsujeva, A. Lisauskas, H.G. Roskos and
K. Köhler, Broad band THz sensing by 2DEG bow-tie-type diodes, Acta
Phys. Pol. A 107, 184–187 (2005),
http://dx.doi.org/10.12693/APhysPolA.107.184
[46] D. Seliuta, E. Širmulis, V. Tamošiūnas, S. Ašmontas, A.
Sužiedėlis, J. Gradauskas, G. Valušis, P.D. Steenson, W.-H. Chow, P.
Harrison, A. Lisauskas, H.G. Roskos, and K. Köhler, THz / subTHz
detection by asymmetrically-shaped bow-tie-type diodes containing a
2DEG layer, in: Proc. 27th Intern. Conf. Physics on
Semiconductors ICPS-27, Flagstaff, Arizona, USA, 26–30 July 2004,
eds. J. Menéndez and C.G. Van de Walle, AIP Conference Proceedings,
Vol. 772 (Two Volume Print, 1697 p.) pp. 1204–1205 (2005),
http://dx.doi.org/10.1063/1.1994544
[47] S. Ašmontas, K. Požela, and K. Repšas, Investigation of I–V
characteristics of Ge and Si asymmetrically necked samples, Lietuvos
Fizikos Rinkinys 15, 249–258 (1975)
[48] S. Ašmontas, Study of electron heating by nonuniform electric
fields in n-Si, Phys. Status Solidi A 31, 409–415 (1975),
http://dx.doi.org/10.1002/pssa.2210310208
[49] S. Ašmontas, A. Juozapavičius, D. Seliuta, E. Širmulis, V.
Tamošiūnas, G. Valušis, and K. Köhler In-plane shaped GaAs/AlGaAs
modulation-doped structures: Physics and applications for THz/subTHz
sensing, in: Trends in Semiconductor Research, ed. T.B.
Elliot (Nova Science Publishers, Inc., New York, 2005) pp. 59–80
[50] D.R. Chamberlin, E. Bründermann, and E.E. Haller, Narrow
linewidth intervalence-band emission from germanium terahertz
lasers, Appl. Phys. Lett. 83, 3–5 (2003),
http://dx.doi.org/10.1063/1.1590422
[51] C. Worrall, J. Alton, M. Houghton, S. Barbieri, H.E. Beere, D.
Ritchie, and C. Sirtori, Continuous wave operation of a superlattice
quantum cascade laser emitting at 2 THz, Opt. Express 14,
171–181 (2006),
http://dx.doi.org/10.1364/OPEX.14.000171
[52] C.L. Cates, G. Briceno, M.S. Sherwin, K.D. Maranowski, C.
Campman, and A.C. Gossard, A concept of a tunable antenna-coupled
intersubband terahertz detector, Physica E 2, 463–647
(1998),
http://dx.doi.org/10.1016/S1386-9477(98)00095-2
[53] C. Liu, C.Y. Song, A.J. SpingThorpe, and J.C. Cao, Terahertz
quantum well photodetector, Appl. Phys. Lett. 84, 4068–4070
(2004),
http://dx.doi.org/10.1063/1.1751620
[54] D.G. Esaev, M.B. M.Rinzan, S.G. Matsik, and A.G.U. Perera,
Design and optimization of GaAs / AlGaAs heterojunction infrared
detectors, J. Appl. Phys. 96, 4588–4597 (2004),
http://dx.doi.org/10.1063/1.1786342
[55] M.B.M. Rinzan, A.G.U. Perera, S.G. Matsik, H.C. Liu, Z.R.
Wasilewski, and M. Buchanan, AlGaAs emitter / GaAs barrier terahertz
detector with a 2.3 THz threshold, Appl. Phys. Lett. 86,
071112-1–3 (2005),
http://dx.doi.org/10.1063/1.1867561