[PDF]    http://dx.doi.org/10.3952/lithjphys.46217

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 131–145 (2006)

Review

NEW TRENDS IN TERAHERTZ ELECTRONICS
V. Tamošiūnasa, D. Seliutaa, A. Juozapavičiusa, E. Širmulisa, G. Valušisa, A. El Fatimyb, Y. Mezianib, N. Dyakonovab, J. Lusakowskib, W. Knapb, A. Lisauskasc, H.G. Roskosc, and K. Köhlerd
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: valusis@pfi.lt
bGES-UMR 5650 CNRS Universite Montpellier 2, 34900 Montpellier, France
cPhysikalisches Institut, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, D-60438 Frankfurt / M, Germany
dFraunhofer-Institut für Angewandte Festkörperphysik, Tullastr. 72, D-79108 Freiburg, Germany

Received 14 March 2006

Dedicated to academician Juras Požela on the occasion of his 80th birthday

The rapid evolution of terahertz (THz) applications in imaging, material diagnostics, communication systems, etc. stimulates an intensive search for new solutions in design and fabrication of compact emitters and receivers. The particular place of THz range in the electromagnetic spectrum – between microwaves and the infrared one – defines the requirement to merge together different concepts in the development of devices for THz electronics needs. The present overview covers several new topics illustrating unprecedented possibilities of modern semiconductor nanotechnology to realize innovative compact devices for terahertz electronics. We describe operation principles of quantum cascade lasers (QCLs) giving special emphasis to the specifics of THz quantum cascade devices and obstacles in their development. As an illustration of successful confluence of different physical approaches, we report on semiconductor nanostructure-based THz sensors – nanometric field effect transistors and asymmetric bow-tie diodes containing two-dimensional electron gas – which can successfully be employed for selective / broadband detection of the THz radiation.
Keywords: THz frequencies, quantum cascade lasers, two-dimensional electron gas, nanometric field effect transistors, asymmetric bow-tie diodes, plasma waves, non-uniform electron heating
PACS: 72.30.+q, 73,21.Fg, 73.61.Ey, 73,63.Hs


NAUJOS KRYPTYS TERAHERCINĖJE ELEKTRONIKOJE
V. Tamošiūnasa, D. Seliutaa, A. Juozapavičiusa, E. Širmulisa, G. Valušisa, A. El Fatimyb, Y. Mezianib, N. Dyakonovab, J. Lusakowskib, W. Knapb, A. Lisauskasc, H.G. Roskosc,K. Köhlerd
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
b2-as Monpeljė universitetas, Monpeljė, Prancūzija
cJohano Volfgango Gėtės universitetas, Frankfurtas prie Maino, Vokietija
dFraunhoferio taikomosios kietojo kūno fizikos institutas, Freiburgas, Vokietija

Apžvelgiamos trys naujos terahercinės elektronikos kryptys, susijusios su mažų matmenų prietaisų kūrimu, pasitelkiant šiuolaikinės puslaidininkinės nanotechnologijos galimybes.
Terahercinių (1 THz yra 1012 Hz) dažnių ruožas, apimantis dažnių juostą nuo 0,1 iki 10 THz, elektromagnetinių bangų skalėje glūdi tarp mikrobangų ir infraraudonosios srities, t. y. tarp klasikiniaiskrūvininkų pernašos dėsniais aprašomos elektronikos ir kvantinės mechanikos taisyklėmis grindžiamos fotonikos. Taigi, ši sritis yra tarsi savotiškas „tiltas”, jungiantis klasikinį ir kvantinį fizikos pasaulius, ir būtent tai daro terahercinės elektronikos prietaisų kūrimą gana savitą ir subtilų, nes reikia ieškoti labai savitų fizikinių ir technologinių sprendimų, talpinančių ir derinančių gana skirtingas fizikines koncepcijas.
Pateikiami ir aprašyti trys tokių netradicinių sprendimų pavyzdžiai, sukurti panaudojant šiuolaikinės molekulinės epitaksijos, fotolitografijos bei elektroninės litografijos pasiekimus. Pirmasis jų, kvantinis kaskadinis lazeris, skirtas THz spinduliuotės emisijai, jungia savyje kvantmechaniniais skaičiavimais pagrįstą sluoksnių sandarą bei bangolaidžių fizikos principais paremtą emisijos modų sklidimo reguliavimą bei jų nuostolių rezonatoriuje mažinimą. Antrasis prietaisas – puslaidininkinis lauko tranzistorius su submikroninio ilgio sklende – yra tarsi plazmos fizikos bei puslaidininkių nanostruktūrų fizikos „lydinys”; pademonstruota, jog jis gali būti sėkmingai pritaikomas atrankiai (selektyviai) THz spinduliuotės detekcijai, kurios dažninė charakteristika gali būti keičiama sklendės įtampa. Trečiasis įtaisas – peteliškės formos asimetrinis diodas su dvimačiais elektronais – „atstovauja” puslaidininkių nanostruktūrų fizikos ir antenos principų „sujungimo” koncepcijai ir yra skirtas plačiajuostei GHz–THz dažnių ruožo detekcijai kambario temperatūroje.
Taip pat pateikiami bei palyginami ir kiti naujausi įvairiais fizikiniais principais veikiančių THz dažnių ruožo kietakūnių emiterių bei jutiklių duomenys.


References / Nuorodos


[1] J. Požela, Physics of High-Speed Transistors (Vilnius, Mokslas, 1989) [in Russian]
[2] A.Y. Cho and J.R. Arthur, Molecular beam epitaxy, Prog. Solid State Chem. 10, 157–191 (1975),
http://dx.doi.org/10.1016/0079-6786(75)90005-9
[3] J. Faist, F. Cappaso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, Quantum cascade laser, Science 264, 553–556 (1994),
http://dx.doi.org/10.1126/science.264.5158.553
[4] F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T.L. Myers, M.S. Taubman, R.M. Williams, C.G. Bethea, K. Unterrainer, H.Y. Hwang, D.L. Sivco, A.Y. Cho, A.M. Sergent, H.C. Liu, and E.A. Whittaker, Quantum cascade lasers: Ultrahigh–speed operation, optical wireless communication, narrow linewidth, and far–infrared emission, IEEE J. Quantum Electron. 38, 511-532 (2002),
http://dx.doi.org/10.1109/JQE.2002.1005403
[5] J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, Bound-to-continuum and two-photon resonance quantum cascade lasers for high duty cycle, high-temperature operation, IEEE J. Quantum Electron. 38, 533–546 (2002),
http://dx.doi.org/10.1109/JQE.2002.1005404
[6] J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, and F. Capasso, Quantum cascade disk lasers, Appl. Phys. Lett. 69, 2456–2458 (1996),
http://dx.doi.org/10.1063/1.117496
[7] C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, A. Douglas Stone, J. Faist, D.L. Sivco, and A.Y. Cho, High-power directional emission from microlasers with chaotic resonators, Science 280, 1556–1564 (1998),
http://dx.doi.org/10.1126/science.280.5369.1556
[8] A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D.L. Sivco, and A.Y. Cho, Single-mode surface-plasmon laser, Appl. Phys. Lett. 76, 2164–2166 (2000),
http://dx.doi.org/10.1063/1.126183
[9] R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C.F. Gmachl, D.M.Tennant, A.M. Sergent, D.L. Sivco, A.Y. Cho, and F. Capasso, Quantum cascade surface-emitting photonic crystal laser, Science 302, 1374–1377 (2003),
http://dx.doi.org/10.1126/science.1090561
[10] R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfeld, A.G. Davies, D.A. Ritchie, R.C. Iotti, and F. Rossi, Terahertz semiconductor heterostructure laser, Nature (London) 417, 156–159 (2002),
http://dx.doi.org/10.1038/417156a
[11] B.S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J.L. Reno, 3.4-THz quantum cascade laser based on LO-phonon scattering for depopulation, Appl. Phys. Lett. 82, 1015–1017 (2003),
http://dx.doi.org/10.1063/1.1554479
[12] C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D.L. Sivco, A.L. Hutchinson, and A.Y. Cho, Long-wavelength (8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons, Opt. Lett. 23, 1366–1368 (1998),
http://dx.doi.org/10.1364/OL.23.001366
[13] B.S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J.L. Reno, 3.0 THz (λ = 100 μm) quantum-cascade laser using metal waveguide for mode confinement, Appl. Phys. Lett. 83, 2124–2126 (2003),
http://dx.doi.org/10.1063/1.1611642
[14] B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ ∼ 141 μm), Electron. Lett. 40, 431–432 (2004),
http://dx.doi.org/10.1049/el:20040300
[15] S. Kumar, B.S. Williams, S. Kohen, Q. Hu, and J.L. Reno, Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature, Appl. Phys. Lett. , 2494–2496 (2004),
http://dx.doi.org/10.1063/1.169509984
[16] B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode, Opt. Express 13, 3331–3339 (2005),
http://dx.doi.org/10.1364/OPEX.13.003331
[17] G. Fasching, A. Benz, K. Unterrainer, R. Zobl, A.M. Andrews, T. Roch, W. Schrenk, and G. Strasser, Terahertz microcavity quantum-cascade lasers, Appl. Phys. Lett. 87, 211112-1–3 (2005),
http://dx.doi.org/10.1063/1.2136222
[18] V. Tamošiūnas, R. Zobl, J. Ulrich, K. Unterrainer, R. Colombelli, C. Gmachl, K. West, L. Pfeiffer, and F. Capasso, Terahertz quantum cascade lasers in a magnetic field, Appl. Phys. Lett. 83, 3873–3875 (2003),
http://dx.doi.org/10.1063/1.1626018
[19] D. Hofstetter, M. Beck, and J. Faist, Quantum-cascade-laser structures as photodetectors, Appl. Phys. Lett. 81, 2683–2685 (2002),
http://dx.doi.org/10.1063/1.1512954
[20] M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, and G. Davies, Terahertz range quantum well infrared photodetector, Appl. Phys. Lett. 84, 475–477 (2004),
http://dx.doi.org/10.1063/1.1641165
[21] H. Luo, H.C. Liu, C.Y. Song, and Z.R. Wasilewski, Background-limited terahertz quantum-well photodetector, Appl. Phys. Lett. 86, 231103-1–3 (2005),
http://dx.doi.org/10.1063/1.1947377
[22] M. Dyakonov and M.S. Shur, Shallow water analogy for a ballistic field effect transitor: New mechanism of plasma wave generation by dc current, Phys. Rev. Lett. 71, 2465–2468 (1993),
http://dx.doi.org/10.1103/PhysRevLett.71.2465
[23] W. Knap, Y. Deng, S. Rumyantsev, J.-Q. Lü, M.S. Shur, C.A. Saylor, and L.C. Brunel, Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor, Appl. Phys. Lett. 80, 3433–3435 (2002),
http://dx.doi.org/10.1063/1.1473685
[24] W. Knap, Y. Deng, S. Rumyantsev, and M.S. Shur, Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors, Appl. Phys. Lett. 81, 4637–4639 (2002),
http://dx.doi.org/10.1063/1.1525851
[25] W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lü, R. Gaska, M.S. Shur, G. Simin, X. Hu, M. Asif Khan, C.A. Saylor, and L.C. Brunel, Nonresonant detection of terahertz radiation in field effect transistors, J. Appl. Phys. 91, 9346–9353 (2002),
http://dx.doi.org/10.1063/1.1468257
[26] X.G. Peralta, S.J. Allen, M.C. Wanke, N.E. Harff, J.A. Simmons, M.P. Lilly, J.L. Reno, P.J. Burke, and J.P. Eisenstein, Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors, Appl. Phys. Lett. 81, 1627–1629 (2002),
http://dx.doi.org/10.1063/1.1497433
[27] E.A. Shaner, M. Lee, M.C. Wanke, A.D. Grine, J.L. Reno, and S.J. Allen, Single-quantum-well grating-gated terahertz plasmon detectors, Appl. Phys. Lett. 87, 193507-1–3 (2005),
http://dx.doi.org/10.1063/1.2128057
[28] Y.M. Meziani, J. Lusakowski, N. Dyakonova, W. Knap, D. Seliuta, E. Širmulis, J. Devenson, G. Valušis, F. Boeuf, and T. Skotnicki, Non resonant response of terahertz radiation by submicron CMOS transistors, IEICE Trans. Electronics (2006, in press),
http://dx.doi.org/10.1093/IETELE/E89-C.7.993
[29] F. Teppe, W. Knap, D. Veksler, M.S. Shur, A.P. Dmitriev, V.Yu. Kachorovskii, and S. Rumyantsev, Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor, Appl. Phys. Lett. 87, 052107-1–3 (2005),
http://dx.doi.org/10.1063/1.2005394
[30] F. Teppe, D. Veksler, V.Yu. Kachorovskii, A.P. Dmitriev, X. Xie, X.-C. Zhang, S. Rumyantsev, W. Knap, and M.S. Shur, Plasma wave resonant detection of femtosecond pulsed terahertz radiation by a nanometer field-effect transistor, Appl. Phys. Lett. 87, 022102-1–3 (2005),
http://dx.doi.org/10.1063/1.1952578
[31] W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V.V. Popov, and M.S. Shur, Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors, Appl. Phys. Lett. 84, 2331–2333 (2004),
http://dx.doi.org/10.1063/1.1689401
[32] J. Lusakowski, W. Knap, N. Dyakonova, L. Varani, J. Mateos, T. Gonzalez, Y. Roelens, S. Bollaert, and A. Cappy, Voltage tunable terahertz emission from a ballistic nanometer InGaAs / InAlAs transistor, J. Appl. Phys. 97, 064307-1–7 (2005).
http://dx.doi.org/10.1063/1.1861140
[33] Y. Deng, R. Kersting, J. Xu, R. Ascazubi, X.C. Zhang, M.S. Shur, R. Gaska, G.S. Simin, M.A. Khan, and V. Ryzhii, Millimeter wave emission from GaN high electron mobility transistor, Appl. Phys. Lett. 84, 70–72 (2004),
http://dx.doi.org/10.1063/1.1638625
[34] M. Dyakonov and M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid, IEEE Trans. Electron Devices 43, 380–387 (1996),
http://dx.doi.org/10.1109/16.485650
[35] A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valušis, A. Shchepetov, V. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, Resonant and voltage-tunable terahertz detection in InGaAs / InP nanometric transistors, Appl. Phys. Lett. (submitted),
http://dx.doi.org/10.1063/1.2358816
[36] D.B. Rutledge and M.S. Muha, Imaging antenna arrays, IEEE Trans. Antennas Propag. 30, 535–540 (1982),
http://dx.doi.org/10.1109/TAP.1982.1142856
[37] R.C. Compton, R.C. McPhedran, Z. Popovic, G.M. Rebeiz, P.P. Tong, and D.B. Rutledge, Bow-tie antennas on a dielectric half-space: Theory and experiment, IEEE Trans. Antennas Propag. 35, 622–630 (1987),
http://dx.doi.org/10.1109/TAP.1987.1144162
[38] H. Drexler, J.S. Scott, S.J. Allen, K.L. Campman, and A.C. Gossard, Photon-assisted tunneling in a resonant tunneling diode: Stimulated emission and absorption in the THz range, Appl. Phys. Lett. 67, 2816–2818 (1995),
http://dx.doi.org/10.1063/1.114794
[39] A.J. Kreisler and A. Gaugue, Recent progress in high-temperature superconductor bolometric detectors: From the mid-infrared to the far-infrared (THz) range, Supercond. Sci. Technol. 13, 1235–1245 (2000),
http://dx.doi.org/10.1088/0953-2048/13/8/321
[40] Y.C. Shen, P.C. Upadhya, H.E. Beere, E.H. Linfield, A.G. Davies, I.S. Gregory, C. Baker, W.R. Tribe, and M.J. Evans, Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers, Appl. Phys. Lett. 85, 164–166 (2004),
http://dx.doi.org/10.1063/1.1768313
[41] K. Hirakawa and H. Sakaki, Mobility of the two-dimensional electron gas at selectively doped n-type AlxGa1-xAs/GaAs heterojunctions with controlled electron concentrations, Phys. Rev. B 33, 8291–8303 (1986),
http://dx.doi.org/10.1103/PhysRevB.33.8291
[42] A. Juozapavičius, L. Ardaravičius, A. Sužiedėlis, A. Kozič, J. Gradauskas, J. Kundrotas, D. Seliuta, E. Širmulis, S. Ašmontas, G. Valušis, H.G. Roskos, and K. Köhler, Microwave sensor based on modulation-doped GaAs/AlGaAs structure, Semicond. Sci. Technol. 19, S436–S439 (2004),
http://dx.doi.org/10.1088/0268-1242/19/4/143
[43] A. Sužiedėlis, S. Ašmontas, J. Gradauskas, G. Valušis, and H.G. Roskos, Giga- and terahertz frequency band detector based on an asymmetrically-necked nn+-GaAs planar structure, J. Appl. Phys. 93, 3034–3038 (2003),
http://dx.doi.org/10.1063/1.1536024
[44] D. Seliuta, E. Širmulis, V. Tamošiūnas, S. Balakauskas, S. Ašmontas, A. Sužiedėlis, J. Gradauskas, G. Valušis, A. Lisauskas, H.G. Roskos, and K. Köhler, Detection of terahertz/sub-terahertz radiation by asymmetrically-shaped 2DEG layers, Electron. Lett. 40, 631–632 (2004),
http://dx.doi.org/10.1049/el:20040412
[45] G. Valušis, D. Seliuta, V. Tamošiūnas, E. Širmulis, S. Balakauskas, J. Gradauskas, A. Sužiedėlis, S. Ašmontas, T. Anbinderis, A. Narkūnas, I. Papsujeva, A. Lisauskas, H.G. Roskos and K. Köhler, Broad band THz sensing by 2DEG bow-tie-type diodes, Acta Phys. Pol. A 107, 184–187 (2005),
http://dx.doi.org/10.12693/APhysPolA.107.184
[46] D. Seliuta, E. Širmulis, V. Tamošiūnas, S. Ašmontas, A. Sužiedėlis, J. Gradauskas, G. Valušis, P.D. Steenson, W.-H. Chow, P. Harrison, A. Lisauskas, H.G. Roskos, and K. Köhler, THz / subTHz detection by asymmetrically-shaped bow-tie-type diodes containing a 2DEG layer, in: Proc. 27th Intern. Conf. Physics on Semiconductors ICPS-27, Flagstaff, Arizona, USA, 26–30 July 2004, eds. J. Menéndez and C.G. Van de Walle, AIP Conference Proceedings, Vol. 772 (Two Volume Print, 1697 p.) pp. 1204–1205 (2005),
http://dx.doi.org/10.1063/1.1994544
[47] S. Ašmontas, K. Požela, and K. Repšas, Investigation of IV characteristics of Ge and Si asymmetrically necked samples, Lietuvos Fizikos Rinkinys 15, 249–258 (1975)
[48] S. Ašmontas, Study of electron heating by nonuniform electric fields in n-Si, Phys. Status Solidi A 31, 409–415 (1975),
http://dx.doi.org/10.1002/pssa.2210310208
[49] S. Ašmontas, A. Juozapavičius, D. Seliuta, E. Širmulis, V. Tamošiūnas, G. Valušis, and K. Köhler In-plane shaped GaAs/AlGaAs modulation-doped structures: Physics and applications for THz/subTHz sensing, in: Trends in Semiconductor Research, ed. T.B. Elliot (Nova Science Publishers, Inc., New York, 2005) pp. 59–80
[50] D.R. Chamberlin, E. Bründermann, and E.E. Haller, Narrow linewidth intervalence-band emission from germanium terahertz lasers, Appl. Phys. Lett. 83, 3–5 (2003),
http://dx.doi.org/10.1063/1.1590422
[51] C. Worrall, J. Alton, M. Houghton, S. Barbieri, H.E. Beere, D. Ritchie, and C. Sirtori, Continuous wave operation of a superlattice quantum cascade laser emitting at 2 THz, Opt. Express 14, 171–181 (2006),
http://dx.doi.org/10.1364/OPEX.14.000171
[52] C.L. Cates, G. Briceno, M.S. Sherwin, K.D. Maranowski, C. Campman, and A.C. Gossard, A concept of a tunable antenna-coupled intersubband terahertz detector, Physica E 2, 463–647 (1998),
http://dx.doi.org/10.1016/S1386-9477(98)00095-2
[53] C. Liu, C.Y. Song, A.J. SpingThorpe, and J.C. Cao, Terahertz quantum well photodetector, Appl. Phys. Lett. 84, 4068–4070 (2004),
http://dx.doi.org/10.1063/1.1751620
[54] D.G. Esaev, M.B. M.Rinzan, S.G. Matsik, and A.G.U. Perera, Design and optimization of GaAs / AlGaAs heterojunction infrared detectors, J. Appl. Phys. 96, 4588–4597 (2004),
http://dx.doi.org/10.1063/1.1786342
[55] M.B.M. Rinzan, A.G.U. Perera, S.G. Matsik, H.C. Liu, Z.R. Wasilewski, and M. Buchanan, AlGaAs emitter / GaAs barrier terahertz detector with a 2.3 THz threshold, Appl. Phys. Lett. 86, 071112-1–3 (2005),
http://dx.doi.org/10.1063/1.1867561