[PDF]    http://dx.doi.org/10.3952/lithjphys.46218

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 237–243 (2006)


ROLE OF MOLECULAR CHAIN ORIENTATION ON CARRIER TRAPPING AND TRANSPORT EFFECTS IN POLYMER BLENDS
V. Kažukauskas and V. Čyras
Faculty of Physics and Institute of Materials Science and Applied Research, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: vaidotas.kazukauskas@ff.vu.lt

Received 11 February 2006

We have investigated carrier trapping and transport effects influenced by molecular chain orientation in the samples of poly(9-vinylcarbazole) (PVK) doped with 30% wt 4-dibutylamino-4′-nitrostilbene (DBANS). The orientation of polar DBANS molecules was achived by applying the electric field above the glass transition temperature; and its effect was investigated by means of Thermally Stimulated Currents (TSCs) method and current–voltage (IV) characterization. We demonstrate that the molecular chain orientation causes significant changes both in IV dependences and the TSC spectra. Changes of the TSCs induced by orientation were best expressed in the temperature range of 280–290 K. They could be attributed to the thermally activated process with activation energy of about 0.38 eV.
Keywords: carrier transport and trapping, polymers PVK and DBANS, molecular chain orientation
PACS: 72.80.Le, 73.50.Gr, 73.61.Ph, 81.40.Rs


MOLEKULINIŲ GRANDŽIŲ ORIENTACIJOS ĮTAKA KRŪVININKŲ PERNAŠAI IR PAGAVIMUI POLIMERŲ MIŠINIUOSE
. V. Kažukauskas, V. Čyras
Vilniaus universitetas, Vilnius, Lietuva

Buvo tirtos polivinilkarbazolo – PVK (angl.: poly(9-vinylcarbazole)), papildyto 30% masės santykiu DBANS (4-dibutylamino-4′-nitrostilbene) polimeru krūvio pernašos ir pagavimo ypatybės, priklausomai nuo DBANS polinių molekulių grandžių erdvinės orientacijos. Molekulės buvo orientuojamos išoriniame elektriniame lauke 394 K temperatūroje. Prijungus įtampą laidumo kryptimi, buvo sukurtas poliarizacijos laukas užtvarine kryptimi, ir atvirkščiai. Taip orientavus bandinio molekules, buvo matuojamos voltamperinės charakteristikos (IV) ir šiluma skatinamųjų srovių (ŠSS) spektrai. Įrodyta, jog molekulių grandžių orientacija turi lemiamą įtaką IV kreivės formai žemiau 250 K temperatūros. Taip pat gauti ryškūs ŠSS skirtumai, kuriems išanalizuoti buvo atliekamas ŠSS modeliavimas, atsižvelgiant tiek į krūvininkų šiluminę generaciją iš pagavimo lygmenų, tiek į krūvininkų judrio kitimą, nusakomą Gauso netvarkos (Gaussian disorder) bei Pulio ir Frenkelio (Poole–Frenkel) empiriniais modeliais.
Temperatūros srityje nuo 166 iki 240 K efektinė ŠSS aktyvacijos energija tebuvo apie 0,037 eV. Tokios mažos vertės aiškintinos ne krūvininkų tankio, bet jų judrio kitimu. Tai įrodo, jog polimeruose krūvininkų judris priklauso nuo išankstinio sužadinimo. ŠSS pokyčiai dėl DBANS molekulių orientacijos buvo ryškiausi temperatūros intervale nuo 280 iki 290 K. Skaitmeninė analizė parodė, jog šie pokyčiai susiję su vienu termiškai aktyvuotu procesu, kurio aktyvacijos energija yra apie 0,38 eV. Kai temperatūra didesnė nei maždaug 310 K, gautas srovės augimas, pasižymintis maždaug 0,9 eV aktyvacijos energija, kuris gali būti dėl krūvininkų šiluminės aktyvacijos per vieno iš bandinio kontaktų potencialinį barjerą.


References / Nuorodos


[1] C. Sentein, C. Fiorini, A. Lorin, and J.-M. Nunzi, Molecular rectification in oriented polymer structures, Advanced Materials 9(10), 809–810 (1997),
http://dx/doi.org/10.1002/adma.19970091009
[2] C. Sentein, C. Fiorini, A. Lorin, J.-M. Nunzi, P. Raimond, and L. Sicot, Poling induced improvement of organic polymer device efficiency, Synthetic Metals 102(1–3), 989–990 (1999),
http://dx/doi.org/10.1016/S0379-6779(98)01101-1
[3] J.L. Oudar, Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds, J. Chem. Phys. 67(2), 446–457 (1977),
http://dx/doi.org/10.1063/1.434888
[4] K.D. Singer, M.G. Kuzyk, and J.E. Sohn, Second-order nonlinear-optical processes in orientationally ordered materials: Relationship between molecular and macroscopic properties, J. Opt. Soc. Am. B 4(6), 968–976 (1987),
http://dx/doi.org/10.1364/JOSAB.4.000968
[5] C. Sentein, C. Fiorini, A. Lorin, and J.-M. Nunzi, Molecular rectification in oriented polymer structures, Synthetic Metals 91(1-3), 81–82 (1997),
http://dx/doi.org/10.1016/S0379-6779(98)80069-6
[6] C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J.-M. Nunzi, Study of orientation induced molecular rectification in polymer films, Optical Materials 9(1-4), 316–322 (1998),
http://dx/doi.org/10.1016/S0925-3467(97)00132-8
[7] L. Sicot, C. Fiorini, A. Lorin, P. Raimond, C. Sentein, and J.-M. Nunzi, Improvement of the photovoltaic properties of polythiophene-based cells, Solar Energy Materials & Solar Cells 63(1), 49–60 (2000),
http://dx/doi.org/10.1016/S0927-0248(00)00019-2
[8] J.G. Simmons and G.W. Taylor, High-field isothermal currents and thermally stimulated currents in insulators having discrete trapping levels, Phys. Rev. B 5(4), 1619–1629 (1972),
http://dx/doi.org/10.1103/PhysRevB.5.1619
[9] G. Kavaliauskienė, V. Kažukauskas, V. Rinkevičius, J. Storasta, J.V. Vaitkus, R. Bates, V. O'Shea, and K.M. Smith, Thermally stimulated currents in semi-insulating GaAs Schottky diodes and their simulation, Appl. Phys. A 69(4), 415–420 (1999),
http://dx/doi.org/10.1007/s003390051024
[10] V. Kažukauskas, Investigation of carrier transport and trapping by oxygen-related defects in MEH-PPV diodes, Semicond. Sci. Technol. 19(12), 1373–1380 (2004),
http://dx/doi.org/10.1088/0268-1242/19/12/008
[11] R.G. Kepler, P.M. Beeson, S.J. Jacobs, R.A. Anderson, M.B. Sinclair, V.S. Valencia, and P.A. Cahill, Electron and hole mobility in tris(8-hydroxyquinolinolato-N1,O8) aluminum, Appl. Phys. Lett. 66(26), 3618–3620 (1995),
http://dx/doi.org/10.1063/1.113806
[12] W.D. Gill, Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole, J. Appl. Phys. 43(12), 5033–5040 (1972),
http://dx/doi.org/10.1063/1.1661065
[13] Organic Photoreceptors for Imaging Systems, eds. P.M. Borsenberger and D.W. Weiss (Dekker, New York, 1993),
http://dx/doi.org/10.1201/9781315214580
[14] M.A. Abkowitz, Electronic transport in polymers, Philos. Mag. B 65(4), 817–830 (1992),
http://dx/doi.org/10.1080/13642819208204922
[15] L.B. Schein, Comparison of charge transport models in molecularly doped polymers, Philos. Mag. B 65(4), 795–810 (1992),
http://dx/doi.org/10.1080/13642819208204920
[16] P.W.M. Blom and M.C.J.M. Vissenberg, Charge transport in poly(p-phenylene vinylene) light-emitting diodes, Mater. Sci. Eng. 27(3), 53–94 (2000),
http://dx/doi.org/10.1016/S0927-796X(00)00009-7
[17] H. Baessler, Charge transport in disordered organic photoconductors, Phys. Status Solidi B 175(1), 15–56 (1993),
http://dx/doi.org/10.1002/pssb.2221750102
[18] D.H. Dunlap, P.E. Parris, and V.M. Kenkre, Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers, Phys. Rev. Lett. 77(3), 542–545 (1996),
http://dx/doi.org/10.1103/PhysRevLett.77.542
[19] S.V. Novikov, D.H. Dunlap, V.M. Kenkre, P.E. Parris, and A.V. Vannikov, Essential role of correlations in governing charge transport in disordered organic materials, Phys Rev. Lett. 81(20), 4472–4475 (1998),
http://dx/doi.org/10.1103/PhysRevLett.81.4472
[20] D.H. Dunlap, V.M. Kenkre, and P.E. Parris, What is behind the √E?, J. Imag. Sci. Technol. 43(5), 437–443 (1999),
http://dx/doi.org/10.2352/J.ImagingSci.Technol.1999.43.5.art00007
[21] W. Bruetting, S. Berleb, and A.G. Mueckl, Device physics of organic light-emitting diodes based on molecular materials, Organic Electronics 2(1), 1–36 (2001),
http://dx/doi.org/10.1016/S1566-1199(01)00009-X
[22] D. Hertel, H. Baessler, U. Scherf, and H.H. Hoerhold, Charge carrier transport in conjugated polymers, J. Chem. Phys. 110(18), 9214–9222 (1999),
http://dx/doi.org/10.1063/1.478844
[23] I. Chen, Theory of thermally stimulated current in hopping systems, J. Appl. Phys. 47(7), 2988–2994 (1976),
http://dx/doi.org/10.1063/1.323040
[24] V. Kažukauskas, Oxygen related defects in MEH-PPV polymer light emitting diodes, Proc. SPIE 5122, 163–172 (2003),
http://dx/doi.org/10.1117/12.515718