[PDF]
http://dx.doi.org/10.3952/lithjphys.46218
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 237–243 (2006)
ROLE OF MOLECULAR CHAIN
ORIENTATION ON CARRIER TRAPPING AND TRANSPORT EFFECTS IN POLYMER
BLENDS
V. Kažukauskas and V. Čyras
Faculty of Physics and Institute of Materials Science and
Applied Research, Vilnius University, Saulėtekio 9, LT-10222
Vilnius, Lithuania
E-mail: vaidotas.kazukauskas@ff.vu.lt
Received 11 February 2006
We have investigated carrier trapping and
transport effects influenced by molecular chain orientation in the
samples of poly(9-vinylcarbazole) (PVK) doped with 30% wt
4-dibutylamino-4′-nitrostilbene (DBANS). The orientation of polar
DBANS molecules was achived by applying the electric field above
the glass transition temperature; and its effect was investigated
by means of Thermally Stimulated Currents (TSCs) method and
current–voltage (I–V) characterization. We
demonstrate that the molecular chain orientation causes
significant changes both in I–V dependences and the
TSC spectra. Changes of the TSCs induced by orientation were best
expressed in the temperature range of 280–290 K. They could be
attributed to the thermally activated process with activation
energy of about 0.38 eV.
Keywords: carrier transport and trapping, polymers PVK and
DBANS, molecular chain orientation
PACS: 72.80.Le, 73.50.Gr, 73.61.Ph, 81.40.Rs
MOLEKULINIŲ GRANDŽIŲ
ORIENTACIJOS ĮTAKA KRŪVININKŲ PERNAŠAI IR PAGAVIMUI POLIMERŲ
MIŠINIUOSE
. V. Kažukauskas, V. Čyras
Vilniaus universitetas, Vilnius, Lietuva
Buvo tirtos polivinilkarbazolo – PVK (angl.: poly(9-vinylcarbazole)),
papildyto 30% masės santykiu DBANS (4-dibutylamino-4′-nitrostilbene)
polimeru krūvio pernašos ir pagavimo ypatybės, priklausomai nuo
DBANS polinių molekulių grandžių erdvinės orientacijos. Molekulės
buvo orientuojamos išoriniame elektriniame lauke 394 K
temperatūroje. Prijungus įtampą laidumo kryptimi, buvo sukurtas
poliarizacijos laukas užtvarine kryptimi, ir atvirkščiai. Taip
orientavus bandinio molekules, buvo matuojamos voltamperinės
charakteristikos (I–V) ir šiluma skatinamųjų srovių
(ŠSS) spektrai. Įrodyta, jog molekulių grandžių orientacija turi
lemiamą įtaką I–V kreivės formai žemiau 250 K
temperatūros. Taip pat gauti ryškūs ŠSS skirtumai, kuriems
išanalizuoti buvo atliekamas ŠSS modeliavimas, atsižvelgiant tiek
į krūvininkų šiluminę generaciją iš pagavimo lygmenų, tiek į
krūvininkų judrio kitimą, nusakomą Gauso netvarkos (Gaussian
disorder) bei Pulio ir Frenkelio (Poole–Frenkel)
empiriniais modeliais.
Temperatūros srityje nuo 166 iki 240 K efektinė ŠSS aktyvacijos
energija tebuvo apie 0,037 eV. Tokios mažos vertės aiškintinos ne
krūvininkų tankio, bet jų judrio kitimu. Tai įrodo, jog
polimeruose krūvininkų judris priklauso nuo išankstinio
sužadinimo. ŠSS pokyčiai dėl DBANS molekulių orientacijos buvo
ryškiausi temperatūros intervale nuo 280 iki 290 K. Skaitmeninė
analizė parodė, jog šie pokyčiai susiję su vienu termiškai
aktyvuotu procesu, kurio aktyvacijos energija yra apie 0,38 eV.
Kai temperatūra didesnė nei maždaug 310 K, gautas srovės augimas,
pasižymintis maždaug 0,9 eV aktyvacijos energija, kuris gali būti
dėl krūvininkų šiluminės aktyvacijos per vieno iš bandinio
kontaktų potencialinį barjerą.
References / Nuorodos
[1] C. Sentein, C. Fiorini, A. Lorin, and J.-M. Nunzi, Molecular
rectification in oriented polymer structures, Advanced Materials 9(10),
809–810 (1997),
http://dx/doi.org/10.1002/adma.19970091009
[2] C. Sentein, C. Fiorini, A. Lorin, J.-M. Nunzi, P. Raimond, and
L. Sicot, Poling induced improvement of organic polymer device
efficiency, Synthetic Metals 102(1–3), 989–990 (1999),
http://dx/doi.org/10.1016/S0379-6779(98)01101-1
[3] J.L. Oudar, Optical nonlinearities of conjugated molecules.
Stilbene derivatives and highly polar aromatic compounds, J. Chem.
Phys. 67(2), 446–457 (1977),
http://dx/doi.org/10.1063/1.434888
[4] K.D. Singer, M.G. Kuzyk, and J.E. Sohn, Second-order
nonlinear-optical processes in orientationally ordered materials:
Relationship between molecular and macroscopic properties, J. Opt.
Soc. Am. B 4(6), 968–976 (1987),
http://dx/doi.org/10.1364/JOSAB.4.000968
[5] C. Sentein, C. Fiorini, A. Lorin, and J.-M. Nunzi, Molecular
rectification in oriented polymer structures, Synthetic Metals 91(1-3),
81–82 (1997),
http://dx/doi.org/10.1016/S0379-6779(98)80069-6
[6] C. Sentein, C. Fiorini, A. Lorin, L. Sicot, and J.-M. Nunzi,
Study of orientation induced molecular rectification in polymer
films, Optical Materials 9(1-4), 316–322 (1998),
http://dx/doi.org/10.1016/S0925-3467(97)00132-8
[7] L. Sicot, C. Fiorini, A. Lorin, P. Raimond, C. Sentein, and
J.-M. Nunzi, Improvement of the photovoltaic properties of
polythiophene-based cells, Solar Energy Materials & Solar Cells
63(1), 49–60 (2000),
http://dx/doi.org/10.1016/S0927-0248(00)00019-2
[8] J.G. Simmons and G.W. Taylor, High-field isothermal currents and
thermally stimulated currents in insulators having discrete trapping
levels, Phys. Rev. B 5(4), 1619–1629 (1972),
http://dx/doi.org/10.1103/PhysRevB.5.1619
[9] G. Kavaliauskienė, V. Kažukauskas, V. Rinkevičius, J. Storasta,
J.V. Vaitkus, R. Bates, V. O'Shea, and K.M. Smith, Thermally
stimulated currents in semi-insulating GaAs Schottky diodes and
their simulation, Appl. Phys. A 69(4), 415–420 (1999),
http://dx/doi.org/10.1007/s003390051024
[10] V. Kažukauskas, Investigation of carrier transport and trapping
by oxygen-related defects in MEH-PPV diodes, Semicond. Sci. Technol.
19(12), 1373–1380 (2004),
http://dx/doi.org/10.1088/0268-1242/19/12/008
[11] R.G. Kepler, P.M. Beeson, S.J. Jacobs, R.A. Anderson, M.B.
Sinclair, V.S. Valencia, and P.A. Cahill, Electron and hole mobility
in tris(8-hydroxyquinolinolato-N1,O8) aluminum, Appl. Phys. Lett. 66(26),
3618–3620 (1995),
http://dx/doi.org/10.1063/1.113806
[12] W.D. Gill, Drift mobilities in amorphous charge-transfer
complexes of trinitrofluorenone and poly-n-vinylcarbazole, J. Appl.
Phys. 43(12), 5033–5040 (1972),
http://dx/doi.org/10.1063/1.1661065
[13] Organic Photoreceptors for Imaging Systems, eds. P.M.
Borsenberger and D.W. Weiss (Dekker, New York, 1993),
http://dx/doi.org/10.1201/9781315214580
[14] M.A. Abkowitz, Electronic transport in polymers, Philos. Mag. B
65(4), 817–830 (1992),
http://dx/doi.org/10.1080/13642819208204922
[15] L.B. Schein, Comparison of charge transport models in
molecularly doped polymers, Philos. Mag. B 65(4), 795–810
(1992),
http://dx/doi.org/10.1080/13642819208204920
[16] P.W.M. Blom and M.C.J.M. Vissenberg, Charge transport in
poly(p-phenylene vinylene) light-emitting diodes, Mater. Sci. Eng. 27(3),
53–94 (2000),
http://dx/doi.org/10.1016/S0927-796X(00)00009-7
[17] H. Baessler, Charge transport in disordered organic
photoconductors, Phys. Status Solidi B 175(1), 15–56 (1993),
http://dx/doi.org/10.1002/pssb.2221750102
[18] D.H. Dunlap, P.E. Parris, and V.M. Kenkre, Charge-dipole model
for the universal field dependence of mobilities in molecularly
doped polymers, Phys. Rev. Lett. 77(3), 542–545 (1996),
http://dx/doi.org/10.1103/PhysRevLett.77.542
[19] S.V. Novikov, D.H. Dunlap, V.M. Kenkre, P.E. Parris, and A.V.
Vannikov, Essential role of correlations in governing charge
transport in disordered organic materials, Phys Rev. Lett. 81(20),
4472–4475 (1998),
http://dx/doi.org/10.1103/PhysRevLett.81.4472
[20] D.H. Dunlap, V.M. Kenkre, and P.E. Parris, What is behind the √E?,
J. Imag. Sci. Technol. 43(5), 437–443 (1999),
http://dx/doi.org/10.2352/J.ImagingSci.Technol.1999.43.5.art00007
[21] W. Bruetting, S. Berleb, and A.G. Mueckl, Device physics of
organic light-emitting diodes based on molecular materials, Organic
Electronics 2(1), 1–36 (2001),
http://dx/doi.org/10.1016/S1566-1199(01)00009-X
[22] D. Hertel, H. Baessler, U. Scherf, and H.H. Hoerhold, Charge
carrier transport in conjugated polymers, J. Chem. Phys. 110(18),
9214–9222 (1999),
http://dx/doi.org/10.1063/1.478844
[23] I. Chen, Theory of thermally stimulated current in hopping
systems, J. Appl. Phys. 47(7), 2988–2994 (1976),
http://dx/doi.org/10.1063/1.323040
[24] V. Kažukauskas, Oxygen related defects in MEH-PPV polymer light
emitting diodes, Proc. SPIE 5122, 163–172 (2003),
http://dx/doi.org/10.1117/12.515718