[PDF]
http://dx.doi.org/10.3952/lithjphys.46219
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 169–175 (2006)
MAGNETIC SHIELDING PROPERTIES OF
WATER IN VARIOUS MOLECULAR AND MOLECULAR-IONIC STRUCTURES
K. Aidas, A. Maršalka, L. Kimtys, V. Urba, and V. Balevičius
Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222
Vilnius, Lithuania
E-mail: kestutis.aidas@ff.vu.lt, arunas.marsalka@ff.vu.lt,
liudvikas.kimtys@ff.vu.lt, vilhelmas.urba@ff.vu.lt,
vytautas.balevicius@ff.vu.lt
Received 28 April 2006
Dedicated to Prof. Dr. Dr. h. c. Hartmut Fuess (Darmstadt
Technical University, Germany) on the occasion of his 65th
birthday
1H and 17O magnetic
shielding tensors of water molecules in various water clusters, as
well as in water–pyridine H-bond complexes and in molecular-ionic
structure of Br−(H2O)6 have been calculated using density
functional theory. The full geometry optimization was performed in
the framework of Becke’s three parameter hybrid method and the
Lee–Yang–Parr correlation functional (B3LYP) combined with
6-311++G** basis set. Magnetic shielding tensors have been
calculated using the hybrid functional of Perdew, Burke, and
Ernzerhof (PBE1PBE) and the gauge-including atomic orbital (GIAO)
approach was applied to ensure gauge invariance of the results.
Solvent effects were taken into account by polarizable continuum
model (PCM). The calculated NMR parameters are compared with the
corresponding experimental data for aqueous system, which exhibit
an unusual critical behaviour and phase transitions.
Keywords: density functional theory, properties of molecules
and molecular ions, line and band widths, shapes and shifts, NMR and
relaxation
PACS: 33.15.Fm, 33.70Jg, 76.60-k
MOLEKULINIŲ VANDENS BEI VANDENS
IR JONŲ DARINIŲ MAGNETINIO EKRANAVIMO SAVYBĖS
. K. Aidas, A. Maršalka, L. Kimtys, V. Urba, V. Balevičius
Vilniaus universitetas, Vilnius, Lietuva
Pastarųjų metų tyrimai kelia vis didėjantį
susidomėjimą įvairių vandens darinių (tirpalų, elektrolitinių
sistemų) savybėmis ir parametrais. Vanduo yra svarbiausia medžiaga
gyvojoje gamtoje, todėl sparčiai auga skaičius darbų, kuriuose
taikomi šiuolaikiniai branduolinio magnetinio rezonanso (BMR)
tomografijos metodai. Be to, dariniuose vanduo / organinis sandas
/ joninė posistemė dažnai aptinkami struktūriniai bei faziniai
virsmai, kurie labai skatina statistikinės kondensuotųjų terpių
fizikos pažangą. Šiame darbe pateikiami įvairių vandens
molekulinių ((H2O)n spiečiai (n
= 1 . . . 5), H2O vandenilinio ryšio kompleksai su
piridinu) bei vandens ir jonų (Br−(H2O)6)
darinių 1H ir 17O branduolių magnetinio
ekranavimo tenzorių skaičiavimo rezultatai kvantinės chemijos ab
initio tankio matricos metodu 6-311G** bazėje visiškai
optimizuojant tiriamųjų molekulių geometriją. Optimizavimui buvo
panaudotas Becke hibridinis trijų parametrų metodas kartu su Lee,
Yang ir Parr’o funkcionalu (B3LYP). Skaičiuota 6-311++G** funkcijų
bazėje. Magnetinio ekranavimo tenzoriams skaičiuoti buvo
pritaikytas hibridinis Perdew, Burke ir Ernzerhof’o funkcionalas
(PBE1PBE) ir GIAO atominės orbitalės. Į tirpiklio reakcijos lauką
buvo atsižvelgta, pritaikius poliarizuotojo kontinuumo modelį
(PCM-IEF). Taip apskaičiuoti vandens 1H ir 17O
branduolių ekranavimo parametrai gerai dera su atitinkamais
eksperimentiniais BMR spektrometrijos duomenimis. Rezultatai bus
pritaikyti tolesniuose tyrimuose, aiškinant vandens BMR signalų
temperatūrines priklausomybes bei restruktūrizavimosi reiškinius
kriziniuose vandens tirpaluose.
References / Nuorodos
[1] P.J. McDonald and J.L. Keddie, Watching paint dry: Magnetic
resonance imaging of soft condensed mater, Europhys. News 33,
48–51 (2002),
http://www.europhysicsnews.com/full/14/article3/article3.html,
http://dx.doi.org/10.1051/epn:2002203
[2] N. McDannold, Quantitative MRI-based temperature mapping on the
proton resonant frequency shift: Review of validation studies, J.
Hyperthermia 21, 533–546 (2005),
http://dx.doi.org/10.1080/02656730500096073
[3] Spatially Resolved Magnetic Resonance: Methods, Materials,
Medicine, Biology, Rheology, Geology, Ecology, Hardware, eds.
P. Blumler, B. Blumich, R. Botto, and E. Fukushima (Wiley-VCH,
Weinheim, 1998)
[4] K. Mizuno, Y. Kimura, H. Morichika, Y. Nishimura, S. Shimada, S.
Maeda, S. Imafuji, and T. Ochi, Hydrophobic hydration of tert-butyl
alcohol probed by NMR and IR, J. Mol. Liquids 85, 139–152
(2000),
http://dx.doi.org/10.1016/S0167-7322(99)00170-1
[5] V. Balevicius, Z. Gdanec, and H. Fuess, NMR probing of
structural peculiarities in ionic solutions close to critical point,
J. Chem. Phys. 123, 224503-1–5 (2005),
http://dx.doi.org/10.1063/1.1989312
[6] A.F. Kostko, M.A. Anisimov, and J.V. Sengers, Criticality in
aqueous solutions of 3-methylpyridine and sodium bromide, Phys. Rev.
E 70, 026118-1–11 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.026118
[7] V. Balevicius and R. Blinc, Critical behaviour of NMR shifts and
relaxation times in ionic solutions, Lithuanian J. Phys. 41,
495–499 (2001)
[8] L. Kimtys and V. Balevicius, Specific concentration dependence
of the proton magnetic resonance chemical shift in the system acetic
acid-water, J. Chem. Phys. 74, 6532–6533 (1981),
http://dx.doi.org/10.1063/1.440971
[9] T. Tsukahara, M. Harada, H. Tomiyasu, and Y. Ikeda, O-17
chemical shift and spin-lattice relaxation measurements of water in
liquid and supercritical states using high-resolution multinuclear
NMR, J. Supercrit. Fluids 26, 73–82 (2003),
http://dx.doi.org/10.1016/S0896-8446(02)00246-2
[10] K. Modig and B. Halle, Proton magnetic shielding tensor in
liquid water, J. Am. Chem. Soc. 124, 12031–12041 (2002),
http://dx.doi.org/10.1021/ja026981s
[11] B.G. Pfrommer, F. Mauri, and S.G. Loule, NMR chemical shifts of
ice and liquid water: The effect of condensation, J. Am. Chem. Soc.
122, 123–129 (2000),
http://dx.doi.org/10.1021/ja991961k
[12] P.B. Karadakov, Electron correlation and basis set effects on
the 17O and 1H nuclear magnetic shieldings
in water clusters (H2O)n (n = 2–5), J.
Molec. Structure 602, 293–301 (2002),
http://dx.doi.org/10.1016/S0022-2860(01)00773-6
[13] I.M. Svishchev and P.G. Kusalik, Proton chemical shift of water
in the liquid-state - computer-simulation results, J. Am. Chem. Soc.
115, 8270-8274 (1993),
http://dx.doi.org/10.1021/ja00071a040
[14] J. Vaara, J. Lounila, K. Ruud, and T. Heigaker, Rovibrational
effects, temperature dependence, and isotope effects on the nuclear
shielding tensors of water: A new 17O absolute shielding
scale, J. Chem. Phys. 109, 8388–8397 (1998),
http://dx.doi.org/10.1063/1.477501
[15] V. Maemets and I. Koppel, Effect of ions on the 17O
and 1H NMR chemical shifts of water, J. Chem. Soc.
Faraday Trans. 94, 3261–3269 (1998),
http://dx.doi.org/10.1039/a805143g
[16] P. Borowski, J. Jaroniec, T. Janowski, and K. Wolinski, Quantum
cluster equilibrium theory treatment of hydrogen-bonded liquids:
Water, methanol and ethanol, Mol. Phys. 101, 1413–1421
(2003),
http://dx.doi.org/10.1080/0026897031000085083
[17] T.M. Nymand, P.O. Astrand, and K.V. Mikkelsen, Chemical shifts
in liquid water calculated by molecular dynamics simulation and
shielding polarizabilities, J. Phys. Chem. B 101, 4105–4110 (1997),
http://dx.doi.org/10.1021/jp9637338
[18] K. Mizuno, K. Oda, Y. Shindo, and A. Okumura, 17O-
and 1H-NMR studies of the water structure in binary
aqueous mixtures of halogenated organic compounds, J. Phys. Chem. 100,
10310–10315 (1996),
http://dx.doi.org/10.1021/jp960194y
[19] R.A. Klein, B. Mennuci, and J. Tomasi, Ab initio
calculations of 17O NMR-chemical shifts for water. The
limits of PCM theory and the role of hydrogen-bond geometry and
cooperativity, J. Phys. Chem. A 108, 5851–5863 (2004),
http://dx.doi.org/10.1021/jp0487408
[20] V. Balevicius, K. Aidas, J. Tamuliene, and H. Fuess, 1H
NMR and DFT study of proton exchange in heterogeneous structures of
pyridine-N-oxide/HCl/DCl/H2O, Spectrochim. Acta,
Part A 61, 835–839 (2005),
http://dx.doi.org/10.1016/j.saa.2004.06.007
[21] K. Aidas and V. Balevicius, Proton transfer in H-bond:
Possibility of short-range order solvent effect, J. Mol. Liquids,
(2006) [in press],
http://dx.doi.org/10.1016/j.molliq.2006.03.036
[22] A.D. Becke, Density functional thermochemistry III: The role of
exact exchange, J. Chem. Phys. 98, 5648–5652 (1993),
http://dx.doi.org/10.1063/1.464913
[23] R.G. Parr and W. Yang, Density-Functional Theory of Atoms
and Molecules (Oxford Univ. Press, Oxford, 1989)
[24] C. Lee, W. Yang, and R.G. Parr, Development of the
Colle-Salvetti correlation-energy formula into a functional of the
electron density, Phys. Rev. B 37, 785–789 (1988),
http://dx.doi.org/10.1103/PhysRevB.37.785
[25] Gaussian 03, Revision B.05, M.J. Frisch, G.W. Trucks,
H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.
Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam,
S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.
Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B.
Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.
Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G.
Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K.
Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q.
Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T.
Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe,
P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A.
Pople (Gaussian, Inc., Pittsburgh PA, 2003)
[26] J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient
approximation for the exchange-correlation hole of a many-electron
system, Phys. Rev. B 54, 16533–16539 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.16533
[27] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient
approximation made simple, Phys. Rev. Lett. 78, 1396 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.1396
[28] J.F. Hinton and K. Wolinski, in: Theoretical Treatments of
Hydrogen Bonding, ed. D. Hadzi (John Wiley & Sons,
Chichester, 1997) p. 75
[29] V. Barone, M. Cossi, and J. Tomasi, Geometry optimization of
molecular structures in solution by the polarizable continuum model,
J. Comput. Chem. 19, 404–417 (1998),
http://dx.doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
[30] E. Cancès, B. Mennucci, and J. Tomasi, Evaluation of solvent
effects in isotropic and anisotropic dielectrics, and in ionic
solutions with a unified integral equation method: Theoretical
bases, computational implementation and numerical applications, J.
Phys. Chem. 107, 3032–3041 (1997),
http://dx.doi.org/10.1063/1.474659
[31] K. Aidas, J. Tamuliene, and V. Balevicius, 1H NMR
shifts and proton exchange in solid phases of pyridine-N-oxide
/ HCl / H2O, Environmental Chem. Phys. 26, 33–38
(2004)
[32] K. Liu, J.D. Cruzan, and R.J. Saykally, Water clusters, Science
271, 929–933 (1996),
http://dx.doi.org/10.1126/science.271.5251.929
[33] J.D. Cruzan, L.B. Braly, K. Liu, M.G. Brown, J.G. Loeser, and
R.J. Saykally, Quantifying hydrogen bond cooperativity in water: VRT
spectroscopy of water tetramer, Science 271, 59–62 (1996),
http://dx.doi.org/10.1126/science.271.5245.59
[34] J. Ceponkus and B. Nelander, Water dimer in solid neon.
Far-infrared spectrum, J. Phys. Chem. A 108, 6499–6502
(2004),
http://dx.doi.org/10.1021/jp049288v
[35] J. Ceponkus, G. Karlstrom, and B. Nelander, Intermolecular
vibrations of the water trimer, a matrix isolation study, J. Phys.
Chem. A 109, 7859–7864 (2005),
http://dx.doi.org/10.1021/jp052096v
[36] Almanac (Bruker-BioSpin, 2005) pp. 32–33,
http://dx.doi.org/10.1053/j.seminoncol.2005.06.007
[37] M. Nakahara and C. Wakai, Monomeric and cluster states of water
molecules in organic solvents, Chem. Lett. 21, 809–812
(1992),
http://dx.doi.org/10.1246/cl.1992.809
[38] R.E. Goldstein, Substituent effects on intermolecular hydrogen
bonding from lattice gas theory for lower critical points:
Comparison with experiments on aqueous solutions of alkylpyridines,
J. Chem. Phys. 79, 4439–4447 (1983),
http://dx.doi.org/10.1063/1.446329
[39] J. Reuben, Hydrogen-bonding effects on oxygen-17 chemical
shifts, J. Amer. Chem. Soc. 91, 5725–5729 (1969),
http://dx.doi.org/10.1021/ja01049a005
[40] M.C. Sicilia, C. Munoz-Caro, and A. Nino, Theoretical analysis
of pyridine protonation in water clusters of increasing size, Chem.
Phys. Chem. 6, 139–147 (2005),
http://dx.doi.org/10.1002/cphc.200400344
[41] B. Mennucci, J.M. Martinez, and J. Tomasi, Solvent effects on
nuclear shieldings: Continuum or discrete salvation models to treat
hydrogen bond and polarity effects, J. Phys. Chem. A 105,
7287–7296 (2001),
http://dx.doi.org/10.1021/jp010837w
[42] V. Balevicius and K. Aidas [in preparation]