[PDF]    http://dx.doi.org/10.3952/lithjphys.46219

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 169–175 (2006)


MAGNETIC SHIELDING PROPERTIES OF WATER IN VARIOUS MOLECULAR AND MOLECULAR-IONIC STRUCTURES
K. Aidas, A. Maršalka, L. Kimtys, V. Urba, and V. Balevičius
Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: kestutis.aidas@ff.vu.lt, arunas.marsalka@ff.vu.lt, liudvikas.kimtys@ff.vu.lt, vilhelmas.urba@ff.vu.lt, vytautas.balevicius@ff.vu.lt

Received 28 April 2006

Dedicated to Prof. Dr. Dr. h. c. Hartmut Fuess (Darmstadt Technical University, Germany) on the occasion of his 65th birthday

1H and 17O magnetic shielding tensors of water molecules in various water clusters, as well as in water–pyridine H-bond complexes and in molecular-ionic structure of Br−(H2O)6 have been calculated using density functional theory. The full geometry optimization was performed in the framework of Becke’s three parameter hybrid method and the Lee–Yang–Parr correlation functional (B3LYP) combined with 6-311++G** basis set. Magnetic shielding tensors have been calculated using the hybrid functional of Perdew, Burke, and Ernzerhof (PBE1PBE) and the gauge-including atomic orbital (GIAO) approach was applied to ensure gauge invariance of the results. Solvent effects were taken into account by polarizable continuum model (PCM). The calculated NMR parameters are compared with the corresponding experimental data for aqueous system, which exhibit an unusual critical behaviour and phase transitions.
Keywords: density functional theory, properties of molecules and molecular ions, line and band widths, shapes and shifts, NMR and relaxation
PACS: 33.15.Fm, 33.70Jg, 76.60-k


MOLEKULINIŲ VANDENS BEI VANDENS IR JONŲ DARINIŲ MAGNETINIO EKRANAVIMO SAVYBĖS
. K. Aidas, A. Maršalka, L. Kimtys, V. Urba, V. Balevičius
Vilniaus universitetas, Vilnius, Lietuva

Pastarųjų metų tyrimai kelia vis didėjantį susidomėjimą įvairių vandens darinių (tirpalų, elektrolitinių sistemų) savybėmis ir parametrais. Vanduo yra svarbiausia medžiaga gyvojoje gamtoje, todėl sparčiai auga skaičius darbų, kuriuose taikomi šiuolaikiniai branduolinio magnetinio rezonanso (BMR) tomografijos metodai. Be to, dariniuose vanduo / organinis sandas / joninė posistemė dažnai aptinkami struktūriniai bei faziniai virsmai, kurie labai skatina statistikinės kondensuotųjų terpių fizikos pažangą. Šiame darbe pateikiami įvairių vandens molekulinių ((H2O)n spiečiai (n = 1 . . . 5), H2O vandenilinio ryšio kompleksai su piridinu) bei vandens ir jonų (Br(H2O)6) darinių 1H ir 17O branduolių magnetinio ekranavimo tenzorių skaičiavimo rezultatai kvantinės chemijos ab initio tankio matricos metodu 6-311G** bazėje visiškai optimizuojant tiriamųjų molekulių geometriją. Optimizavimui buvo panaudotas Becke hibridinis trijų parametrų metodas kartu su Lee, Yang ir Parr’o funkcionalu (B3LYP). Skaičiuota 6-311++G** funkcijų bazėje. Magnetinio ekranavimo tenzoriams skaičiuoti buvo pritaikytas hibridinis Perdew, Burke ir Ernzerhof’o funkcionalas (PBE1PBE) ir GIAO atominės orbitalės. Į tirpiklio reakcijos lauką buvo atsižvelgta, pritaikius poliarizuotojo kontinuumo modelį (PCM-IEF). Taip apskaičiuoti vandens 1H ir 17O branduolių ekranavimo parametrai gerai dera su atitinkamais eksperimentiniais BMR spektrometrijos duomenimis. Rezultatai bus pritaikyti tolesniuose tyrimuose, aiškinant vandens BMR signalų temperatūrines priklausomybes bei restruktūrizavimosi reiškinius kriziniuose vandens tirpaluose.


References / Nuorodos


[1] P.J. McDonald and J.L. Keddie, Watching paint dry: Magnetic resonance imaging of soft condensed mater, Europhys. News 33, 48–51 (2002),
http://www.europhysicsnews.com/full/14/article3/article3.html,
http://dx.doi.org/10.1051/epn:2002203
[2] N. McDannold, Quantitative MRI-based temperature mapping on the proton resonant frequency shift: Review of validation studies, J. Hyperthermia 21, 533–546 (2005),
http://dx.doi.org/10.1080/02656730500096073
[3] Spatially Resolved Magnetic Resonance: Methods, Materials, Medicine, Biology, Rheology, Geology, Ecology, Hardware, eds. P. Blumler, B. Blumich, R. Botto, and E. Fukushima (Wiley-VCH, Weinheim, 1998)
[4] K. Mizuno, Y. Kimura, H. Morichika, Y. Nishimura, S. Shimada, S. Maeda, S. Imafuji, and T. Ochi, Hydrophobic hydration of tert-butyl alcohol probed by NMR and IR, J. Mol. Liquids 85, 139–152 (2000),
http://dx.doi.org/10.1016/S0167-7322(99)00170-1
[5] V. Balevicius, Z. Gdanec, and H. Fuess, NMR probing of structural peculiarities in ionic solutions close to critical point, J. Chem. Phys. 123, 224503-1–5 (2005),
http://dx.doi.org/10.1063/1.1989312
[6] A.F. Kostko, M.A. Anisimov, and J.V. Sengers, Criticality in aqueous solutions of 3-methylpyridine and sodium bromide, Phys. Rev. E 70, 026118-1–11 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.026118
[7] V. Balevicius and R. Blinc, Critical behaviour of NMR shifts and relaxation times in ionic solutions, Lithuanian J. Phys. 41, 495–499 (2001)
[8] L. Kimtys and V. Balevicius, Specific concentration dependence of the proton magnetic resonance chemical shift in the system acetic acid-water, J. Chem. Phys. 74, 6532–6533 (1981),
http://dx.doi.org/10.1063/1.440971
[9] T. Tsukahara, M. Harada, H. Tomiyasu, and Y. Ikeda, O-17 chemical shift and spin-lattice relaxation measurements of water in liquid and supercritical states using high-resolution multinuclear NMR, J. Supercrit. Fluids 26, 73–82 (2003),
http://dx.doi.org/10.1016/S0896-8446(02)00246-2
[10] K. Modig and B. Halle, Proton magnetic shielding tensor in liquid water, J. Am. Chem. Soc. 124, 12031–12041 (2002),
http://dx.doi.org/10.1021/ja026981s
[11] B.G. Pfrommer, F. Mauri, and S.G. Loule, NMR chemical shifts of ice and liquid water: The effect of condensation, J. Am. Chem. Soc. 122, 123–129 (2000),
http://dx.doi.org/10.1021/ja991961k
[12] P.B. Karadakov, Electron correlation and basis set effects on the 17O and 1H nuclear magnetic shieldings in water clusters (H2O)n (n = 2–5), J. Molec. Structure 602, 293–301 (2002),
http://dx.doi.org/10.1016/S0022-2860(01)00773-6
[13] I.M. Svishchev and P.G. Kusalik, Proton chemical shift of water in the liquid-state - computer-simulation results, J. Am. Chem. Soc. 115, 8270-8274 (1993),
http://dx.doi.org/10.1021/ja00071a040
[14] J. Vaara, J. Lounila, K. Ruud, and T. Heigaker, Rovibrational effects, temperature dependence, and isotope effects on the nuclear shielding tensors of water: A new 17O absolute shielding scale, J. Chem. Phys. 109, 8388–8397 (1998),
http://dx.doi.org/10.1063/1.477501
[15] V. Maemets and I. Koppel, Effect of ions on the 17O and 1H NMR chemical shifts of water, J. Chem. Soc. Faraday Trans. 94, 3261–3269 (1998),
http://dx.doi.org/10.1039/a805143g
[16] P. Borowski, J. Jaroniec, T. Janowski, and K. Wolinski, Quantum cluster equilibrium theory treatment of hydrogen-bonded liquids: Water, methanol and ethanol, Mol. Phys. 101, 1413–1421 (2003),
http://dx.doi.org/10.1080/0026897031000085083
[17] T.M. Nymand, P.O. Astrand, and K.V. Mikkelsen, Chemical shifts in liquid water calculated by molecular dynamics simulation and shielding polarizabilities, J. Phys. Chem. B 101, 4105–4110 (1997),
http://dx.doi.org/10.1021/jp9637338
[18] K. Mizuno, K. Oda, Y. Shindo, and A. Okumura, 17O- and 1H-NMR studies of the water structure in binary aqueous mixtures of halogenated organic compounds, J. Phys. Chem. 100, 10310–10315 (1996),
http://dx.doi.org/10.1021/jp960194y
[19] R.A. Klein, B. Mennuci, and J. Tomasi, Ab initio calculations of 17O NMR-chemical shifts for water. The limits of PCM theory and the role of hydrogen-bond geometry and cooperativity, J. Phys. Chem. A 108, 5851–5863 (2004),
http://dx.doi.org/10.1021/jp0487408
[20] V. Balevicius, K. Aidas, J. Tamuliene, and H. Fuess, 1H NMR and DFT study of proton exchange in heterogeneous structures of pyridine-N-oxide/HCl/DCl/H2O, Spectrochim. Acta, Part A 61, 835–839 (2005),
http://dx.doi.org/10.1016/j.saa.2004.06.007
[21] K. Aidas and V. Balevicius, Proton transfer in H-bond: Possibility of short-range order solvent effect, J. Mol. Liquids, (2006) [in press],
http://dx.doi.org/10.1016/j.molliq.2006.03.036
[22] A.D. Becke, Density functional thermochemistry III: The role of exact exchange, J. Chem. Phys. 98, 5648–5652 (1993),
http://dx.doi.org/10.1063/1.464913
[23] R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, Oxford, 1989)
[24] C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 785–789 (1988),
http://dx.doi.org/10.1103/PhysRevB.37.785
[25] Gaussian 03, Revision B.05, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople (Gaussian, Inc., Pittsburgh PA, 2003)
[26] J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54, 16533–16539 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.16533
[27] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 78, 1396 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.1396
[28] J.F. Hinton and K. Wolinski, in: Theoretical Treatments of Hydrogen Bonding, ed. D. Hadzi (John Wiley & Sons, Chichester, 1997) p. 75
[29] V. Barone, M. Cossi, and J. Tomasi, Geometry optimization of molecular structures in solution by the polarizable continuum model, J. Comput. Chem. 19, 404–417 (1998),
http://dx.doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
[30] E. Cancès, B. Mennucci, and J. Tomasi, Evaluation of solvent effects in isotropic and anisotropic dielectrics, and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation and numerical applications, J. Phys. Chem. 107, 3032–3041 (1997),
http://dx.doi.org/10.1063/1.474659
[31] K. Aidas, J. Tamuliene, and V. Balevicius, 1H NMR shifts and proton exchange in solid phases of pyridine-N-oxide / HCl / H2O, Environmental Chem. Phys. 26, 33–38 (2004)
[32] K. Liu, J.D. Cruzan, and R.J. Saykally, Water clusters, Science 271, 929–933 (1996),
http://dx.doi.org/10.1126/science.271.5251.929
[33] J.D. Cruzan, L.B. Braly, K. Liu, M.G. Brown, J.G. Loeser, and R.J. Saykally, Quantifying hydrogen bond cooperativity in water: VRT spectroscopy of water tetramer, Science 271, 59–62 (1996),
http://dx.doi.org/10.1126/science.271.5245.59
[34] J. Ceponkus and B. Nelander, Water dimer in solid neon. Far-infrared spectrum, J. Phys. Chem. A 108, 6499–6502 (2004),
http://dx.doi.org/10.1021/jp049288v
[35] J. Ceponkus, G. Karlstrom, and B. Nelander, Intermolecular vibrations of the water trimer, a matrix isolation study, J. Phys. Chem. A 109, 7859–7864 (2005),
http://dx.doi.org/10.1021/jp052096v
[36] Almanac (Bruker-BioSpin, 2005) pp. 32–33,
http://dx.doi.org/10.1053/j.seminoncol.2005.06.007
[37] M. Nakahara and C. Wakai, Monomeric and cluster states of water molecules in organic solvents, Chem. Lett. 21, 809–812 (1992),
http://dx.doi.org/10.1246/cl.1992.809
[38] R.E. Goldstein, Substituent effects on intermolecular hydrogen bonding from lattice gas theory for lower critical points: Comparison with experiments on aqueous solutions of alkylpyridines, J. Chem. Phys. 79, 4439–4447 (1983),
http://dx.doi.org/10.1063/1.446329
[39] J. Reuben, Hydrogen-bonding effects on oxygen-17 chemical shifts, J. Amer. Chem. Soc. 91, 5725–5729 (1969),
http://dx.doi.org/10.1021/ja01049a005
[40] M.C. Sicilia, C. Munoz-Caro, and A. Nino, Theoretical analysis of pyridine protonation in water clusters of increasing size, Chem. Phys. Chem. 6, 139–147 (2005),
http://dx.doi.org/10.1002/cphc.200400344
[41] B. Mennucci, J.M. Martinez, and J. Tomasi, Solvent effects on nuclear shieldings: Continuum or discrete salvation models to treat hydrogen bond and polarity effects, J. Phys. Chem. A 105, 7287–7296 (2001),
http://dx.doi.org/10.1021/jp010837w
[42] V. Balevicius and K. Aidas [in preparation]