[PDF]
http://dx.doi.org/10.3952/lithjphys.46304
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 295–300 (2006)
THE ONE-DIMENSIONAL FRACTIONAL
QUANTUM OPERATOR OF MOMENTUM
P. Miškinis
Department of Physics, Vilnius Gediminas Technical University,
Saulėtekio 11, LT-10223 Vilnius, Lithuania
E-mail: paulius.miskinis@fm.vtu.lt
Received 7 April 2006
In the case of the quantum
generalization of Lévy processes, expressions for the Hermitian
operator of momentum and its eigenfunctions are proposed. The
normalization constant has been determined and its relation to the
translation operator is shown. The interrelation between the
momentum and the wave number has been generalized for the
processes with a non-integer dimensionality α.
Keywords: Lévy processes, quantum
mechanics, fractional calculus
PACS: 5.40.Fb, 05.30.Pr, 03.65.Db, 03.65.Sq
VIENMATIS TRUPMENINIS KVANTINIS
JUDESIO KIEKIO OPERATORIUS
P. Miškinis
Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva
Kvantinio Lévy (Levi) vyksmo atveju pasiūlyta
ermitinio vienmačio judesio kiekio operatoriaus išraiška
rastos jo tikrinės funkcijos bei tikrinės vertės
Išreikštu pavidalu rasta normavimo konstanta
ir poslinkio operatoriaus išraiška. Sąryšis tarp judesio kiekio ir
banginio skaičiaus
apibendrintas vyksmams, turintiems trupmeninį Lévy indeksą.
References / Nuorodos
[1] M. Kac, Probability and Related Topics in Physical Sciences,
Ch. IV (Interscience, New York, 1959)
[2] P. Lévy, The'orie de l'Addition des Variables Aléatoires
(Gauthier-Villaws, Paris, 1937)
[3] B.B. Mandelbrot and J.W. van Ness, Fractional Brownian motions,
fractional noises and applications, SIAM (Soc. Ind. Appl. Math.)
Rev. 70(4), 422–437 (1968),
http://dx.doi.org/10.1137/1010093
[4] J. Klafter, A. Blumen, and M.F. Shlesinger, Stochastic pathway
to anomalous diffusion, Phys. Rev. A 55(7), 3081–3085
(1987),
http://dx.doi.org/10.1103/PhysRevA.35.3081
[5] G.M. Zaslavsky, Fractional kinetic equation for Hamiltonian
chaos, Physica D 76(1–3), 110–122 (1994),
http://dx.doi.org/10.1016/0167-2789(94)90254-2
[6] G. Zimbardo, P. Veltri, G. Basile, and S. Principato, Anomalous
diffusion and Lévy random walk of magnetic field lines in three
dimensional turbulence, Phys. Plasmas 2(7), 2653–2663
(1995),
http://dx.doi.org/10.1063/1.871453
[7] R.N. Mantega and H.E. Stanley, Scaling behaviour in the dynamics
of an economic index, Nature 376(6535), 46–49 (1995),
http://dx.doi.org/10.1038/376046a0
[8] B.J. West and W. Deering, Fractal physiology for physicists:
Lévy statistics, Phys. Rep. 246(1–2), 1–100 (1994).
http://dx.doi.org/10.1016/0370-1573(94)00055-7
[9] Fractional Differentiation and its Applications, eds. A.
Le Mehauté et al. (Books on Demand, Norderstedt, 2005),
[10] R. Metzler and J. Klafter, The restaurant at the end of the
random walk: Recent developments in the description of anomalous
transport by fractional dynamics, J. Phys. A 37(31),
R161–R208 (2004),
http://dx.doi.org/10.1088/0305-4470/37/31/R01
[11] G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous
transport, Phys. Rep. 371(6), 461–580 (2002),
http://dx.doi.org/10.1016/S0370-1573(02)00331-9
[12] E. Lutz, Fractional transport equations for Lévy stable
processes, Phys. Rev. Lett. 86(12), 2208–2211 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2208
[13] N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62(3),
3135–3145 (2000),
http://dx.doi.org/10.1103/PhysRevE.62.3135
[14] M. Naber, Time fractional Schrödinger equation, J. Math. Phys.
45(8), 3339–3356 (2004),
http://dx.doi.org/10.1063/1.1769611
[15] H. Kleinert, Path Integrals in Quantum Mechanics,
Statistics and Polymer Physics (World Scientific, Singapore,
1990),
http://dx.doi.org/10.1142/1081
[16] L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Course of
Theoretical Physics, Vol. 1 (Nonrelativistic Theory)
(Pergamon, New York, 1965)
[17] A. Marchaud, Sur les dérivées et sur les differences des
functions de variables réelles, J. Math. Pures Appl. 6(4),
337–425 (1927)
[18] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional
Integrals and Derivatives. Theory and Applications (Gordon and
Breach, Amsterdam, 1993)