[PDF]    http://dx.doi.org/10.3952/lithjphys.46304

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 295–300 (2006)


THE ONE-DIMENSIONAL FRACTIONAL QUANTUM OPERATOR OF MOMENTUM
P. Miškinis
Department of Physics, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
E-mail: paulius.miskinis@fm.vtu.lt

Received 7 April 2006

In the case of the quantum generalization of Lévy processes, expressions for the Hermitian operator of momentum and its eigenfunctions are proposed. The normalization constant has been determined and its relation to the translation operator is shown. The interrelation between the momentum and the wave number has been generalized for the processes with a non-integer dimensionality α.
Keywords: Lévy processes, quantum mechanics, fractional calculus
PACS: 5.40.Fb, 05.30.Pr, 03.65.Db, 03.65.Sq


VIENMATIS TRUPMENINIS KVANTINIS JUDESIO KIEKIO OPERATORIUS
P. Miškinis
Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Kvantinio Lévy (Levi) vyksmo atveju pasiūlyta ermitinio vienmačio judesio kiekio operatoriaus išraiška
p^=l0α1/2[(i+)α+(i˜)α],\begin{equation*} \hat{p}=\,\hbar l^{\alpha-1}_0 / 2 \cdot \big [(-\mathrm{i}\partial^{}_{+})^{\alpha}+(\mathrm{i} \tilde{\partial}^{}_{-})^{\alpha}\big ] \,, \end{equation*}
rastos jo tikrinės funkcijos bei tikrinės vertės\begin{equation*} \psi(x,t)=A\,\mathrm{e}^{\mathrm{i}\kappa\,x-\mathrm{i} \, E/\,\hbar \, t}\,,\, \quad \kappa= \big [p/(\hbar l^{\alpha-1}_0) \big ]^{1/\alpha}\,. \end{equation*}
ψ(x,t)=AeiκxiE/t,κ=[p/(l0α1)]1/α.\begin{equation*} \psi(x,t)=A\,\mathrm{e}^{\mathrm{i}\kappa\,x-\mathrm{i} \, E/\,\hbar \, t}\,,\, \quad \kappa= \big [\,p/\,(\hbar l^{\alpha-1}_0) \big ]^{1/\alpha}\,. \end{equation*}
Išreikštu pavidalu rasta normavimo konstanta
A=|κ|/(2π|p|)1/2π,kaiα1,\begin{equation*} A = \sqrt {\left| \,\kappa \,\right|/(2\pi\! \left|\,p \,\right|)} \, \rightarrow 1/\sqrt{2 \pi \,\hbar }\,,\quad \mathrm{kai}\quad {\alpha \to 1} \, , \end{equation*}
ir poslinkio operatoriaus išraiška. Sąryšis tarp judesio kiekio ir banginio skaičiaus
p=l0α1κα\begin{equation*} p = \,\hbar l_0^{\alpha - 1} \kappa ^\alpha \end{equation*}
apibendrintas vyksmams, turintiems trupmeninį Lévy indeksą.


References / Nuorodos


[1] M. Kac, Probability and Related Topics in Physical Sciences, Ch. IV (Interscience, New York, 1959)
[2] P. Lévy, The'orie de l'Addition des Variables Aléatoires (Gauthier-Villaws, Paris, 1937)
[3] B.B. Mandelbrot and J.W. van Ness, Fractional Brownian motions, fractional noises and applications, SIAM (Soc. Ind. Appl. Math.) Rev. 70(4), 422–437 (1968),
http://dx.doi.org/10.1137/1010093
[4] J. Klafter, A. Blumen, and M.F. Shlesinger, Stochastic pathway to anomalous diffusion, Phys. Rev. A 55(7), 3081–3085 (1987),
http://dx.doi.org/10.1103/PhysRevA.35.3081
[5] G.M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos, Physica D 76(1–3), 110–122 (1994),
http://dx.doi.org/10.1016/0167-2789(94)90254-2
[6] G. Zimbardo, P. Veltri, G. Basile, and S. Principato, Anomalous diffusion and Lévy random walk of magnetic field lines in three dimensional turbulence, Phys. Plasmas 2(7), 2653–2663 (1995),
http://dx.doi.org/10.1063/1.871453
[7] R.N. Mantega and H.E. Stanley, Scaling behaviour in the dynamics of an economic index, Nature 376(6535), 46–49 (1995),
http://dx.doi.org/10.1038/376046a0
[8] B.J. West and W. Deering, Fractal physiology for physicists: Lévy statistics, Phys. Rep. 246(1–2), 1–100 (1994).
http://dx.doi.org/10.1016/0370-1573(94)00055-7
[9] Fractional Differentiation and its Applications, eds. A. Le Mehauté et al. (Books on Demand, Norderstedt, 2005),
[10] R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37(31), R161–R208 (2004),
http://dx.doi.org/10.1088/0305-4470/37/31/R01
[11] G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep. 371(6), 461–580 (2002),
http://dx.doi.org/10.1016/S0370-1573(02)00331-9
[12] E. Lutz, Fractional transport equations for Lévy stable processes, Phys. Rev. Lett. 86(12), 2208–2211 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.2208
[13] N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62(3), 3135–3145 (2000),
http://dx.doi.org/10.1103/PhysRevE.62.3135
[14] M. Naber, Time fractional Schrödinger equation, J. Math. Phys. 45(8), 3339–3356 (2004),
http://dx.doi.org/10.1063/1.1769611
[15] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, Singapore, 1990),
http://dx.doi.org/10.1142/1081
[16] L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Course of Theoretical Physics, Vol. 1 (Nonrelativistic Theory) (Pergamon, New York, 1965)
[17] A. Marchaud, Sur les dérivées et sur les differences des functions de variables réelles, J. Math. Pures Appl. 6(4), 337–425 (1927)
[18] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Amsterdam, 1993)