[PDF]
http://dx.doi.org/10.3952/lithjphys.46310
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 383–388 (2006)
SEM AND EDX CHARACTERIZATION OF
ANCIENT POTTERY
A. Krapukaitytėa, I. Pakutinskienėa, S.
Tautkusa, and A. Kareivab
aDepartment of Analytical and Environmental
Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius,
Lithuania
bDepartment of General and Inorganic Chemistry,
Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
E-mail: aivaras.kareiva@chf.vu.lt
Received 18 May 2006
The potentialities of scanning electron
microscopy (SEM) along with energy dispersive X-ray (EDX) analysis
in assessing the chemical and mineralogical composition of ancient
pottery are investigated. The results of SEM and EDX analytical
characterization of the Bronze Age pottery from different regions
of Lithuania are presented. Six samples of historical ancient
pottery from five different archaeological complexes (villages
Stanaičiai, Turlojiškės, Žvainiai, Nikėlai, and Jurgaičiai) were
analysed. It was concluded that investigated pottery samples from
different districts of Lithuania showed different chemical and
phase compositions, possibly due to the different fabrication
conditions.
Keywords: Bronze Age, Lithuania, ancient pottery,
archaeological ceramics, microstructural, morphology, and elemental
composition
PACS: 82.80.-d, 91.60.Ed
SENOVINĖS KERAMIKOS APIBŪDINIMAS
SEM IR EDX METODAIS
A. Krapukaitytė, I. Pakutinskienė, S. Tautkus, A. Kareiva
Vilniaus universitetas, Vilnius, Lietuva
Skleidžiamosios elektroninės mikroskopijos
(SEM) ir rentgeno spindulių dispersinės analizės (EDX) metodais
buvo apibūdinti senovinės archeologinės keramikos pavyzdžiai.
Apibūdintos skirtingų Lietuvos archeologinių radimviečių
(Stanaičių, Turlojiškių, Žvainių, Nikėlų ir Jurgaičių) įvairios
keraminės šukės. Nustatyta, kad skirtingose vietovėse rastos
archeologinės keramikos paviršiaus ypatumai, cheminė bei fazinė
sudėtis yra nevienodi. Tai gali būti susiję su keraminių dirbinių
gamybos technologiniais ypatumais.
References / Nuorodos
[1] G. Biscontin, M.P. Birelli, and E. Zendri, Characterization of
binders employed in the manufacture of Venetian historical mortars,
J. Cultur. Heritage 3, 31–37 (2002),
http://dx.doi.org/10.1016/S1296-2074(02)01156-1
[2] G.E. De Benedetto, R. Laviano, L. Sabbatini, and P.G. Zambonin,
Infrared spectroscopy in the mineralogical characterization of
ancient pottery, J. Cultur. Heritage 3, 177–186 (2002),
http://dx.doi.org/10.1016/S1296-2074(02)01178-0
[3] G. Eramo, R. Laviano, I.M. Muntoni, and G. Volpe, Late Roman
cooking pottery from the Tavoliere area (Southern Italy): Raw
materials and technological aspects, J. Cultur. Heritage 5,
157–165 (2004),
http://dx.doi.org/10.1016/j.culher.2003.05.002
[4] E.P. Bescher, F. Pique, F. Stulik, and J.D. Mackenzie, Long term
protection of the last judgment mosaic in Prague, J. Sol–Gel Sci.
Technol. 19, 215–218 (2000),
http://dx.doi.org/10.1023/A:1008784221259
[5] R.A. Caruso and M. Antonietti, Sol–gel nanocoating: An approach
to the preparation of structured materials, Chem. Mater. 13,
3272–3282 (2001),
http://dx.doi.org/10.1021/cm001257z
[6] L. Nasdala, A. Banerjee, T. Hager, and W. Hofmeister, Laser
Raman micro-spectroscopy in mineralogical research, Eur. Microsc.
Anal. 3, 11–13 (2001)
[7] A. Bakolas, G. Biscontin, V. Contardi, E. Franceschi, A.
Moropoulou, D. Palazzi, and E. Zendri, Thermoanalytical research on
traditional mortars in Venice, Thermochim. Acta 269/270,
817–828 (1995),
http://dx.doi.org/10.1016/0040-6031(95)02574-X
[8] F.E. Wagner and U. Wagner, Mössbauer spectra of clays and
ceramics, Hyperfine Interactions 154, 35–82 (2004),
http://dx.doi.org/10.1023/B:HYPE.0000032113.42496.f2
[9] P.M. Rice, Pottery Analysis – A Sourcebook (The
University of Chicago Press, Chicago, 1987)
[10] J. Kiuberis, A. Merkevicius, R. Juskenas, and A. Kareiva,
Preliminary investigation of ceramic materials – particularly
important stage for successful conservation of pottery, Mater. Sci.
10, 334–337 (2004),
http://matsc.ktu.lt/index.php/MatSc/article/view/26654
[11] M. Klein, F. Jesse, H.U. Kasper, and A. Golden, Chemical
characterization of ancient pottery from Sudan by X-ray fluorescence
spectrometry (XRF), electron microprobe analyses (EMPA) and
inductively coupled plasma mass spectrometry (ICP-MS), Archaeometry
46, 339–356 (2004),
http://dx.doi.org/10.1111/j.1475-4754.2004.00162.x
[12] P. Goodhew and F. Humphreys, Electron Microscopy and
Analysis (Taylor & Francis, London, 1988)
[13] P. Cardiano, S. Ioppolo, C. De Stefano, A. Pettignano, S.
Sergi, and P. Piraino, Study and characterization of the ancient
bricks of monastery of “San Filippo di Fragala” in Frazzano
(Sicily), Anal. Chim. Acta 519, 103–111 (2004),
http://dx.doi.org/10.1016/j.aca.2004.05.042
[14] G. Padeletti, P. Fermo, S. Gilardoni, and A. Galli,
Technological study of ancient ceramics produced in Casteldurante
(central Italy) during the Renaissance, Appl. Phys. A 79,
335–339 (2004),
http://dx.doi.org/10.1007/s00339-004-2521-5
[15] G. Saviano, D. Pilone, F. Felli, and L. Drago, Surface analyses
“impasto rosso” pottery from Southern Etruria and Latium, Surf. Eng.
21, 411–417 (2005),
http://dx.doi.org/10.1179/174329305X64411
[16] C. Stella, Surface alteration and morphological
characterization of pottery specimens from a northern Italian Iron
Age site, Surf. Eng. 21, 418–423 (2005),
http://dx.doi.org/10.1179/174329305X64420
[17] P. Colomban, N.Q. Liem, G. Sagon, H.X. Tinh, and T.B. Hoanh,
Microstructure, composition and processing of 15th century
Vietnamese porcelains and celadons, J. Cultur. Heritage 4,
187–197 (2003),
http://dx.doi.org/10.1016/S1296-2074(03)00045-1
[18] P. Colomban, D.N. Khoi, N.Q. Liem, C. Roche, and G. Sagon, Sa
Huynh and Cham potteries: Microstructure and likely processing, J.
Cultur. Heritage 5, 149–155 (2004),
http://dx.doi.org/10.1016/j.culher.2003.06.005