[PDF]    http://dx.doi.org/10.3952/lithjphys.46310

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 383–388 (2006)


SEM AND EDX CHARACTERIZATION OF ANCIENT POTTERY
A. Krapukaitytėa, I. Pakutinskienėa, S. Tautkusa, and A. Kareivab
aDepartment of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
bDepartment of General and Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
E-mail: aivaras.kareiva@chf.vu.lt

Received 18 May 2006

The potentialities of scanning electron microscopy (SEM) along with energy dispersive X-ray (EDX) analysis in assessing the chemical and mineralogical composition of ancient pottery are investigated. The results of SEM and EDX analytical characterization of the Bronze Age pottery from different regions of Lithuania are presented. Six samples of historical ancient pottery from five different archaeological complexes (villages Stanaičiai, Turlojiškės, Žvainiai, Nikėlai, and Jurgaičiai) were analysed. It was concluded that investigated pottery samples from different districts of Lithuania showed different chemical and phase compositions, possibly due to the different fabrication conditions.
Keywords: Bronze Age, Lithuania, ancient pottery, archaeological ceramics, microstructural, morphology, and elemental composition
PACS: 82.80.-d, 91.60.Ed


SENOVINĖS KERAMIKOS APIBŪDINIMAS SEM IR EDX METODAIS
A. Krapukaitytė, I. Pakutinskienė, S. Tautkus, A. Kareiva
Vilniaus universitetas, Vilnius, Lietuva

Skleidžiamosios elektroninės mikroskopijos (SEM) ir rentgeno spindulių dispersinės analizės (EDX) metodais buvo apibūdinti senovinės archeologinės keramikos pavyzdžiai. Apibūdintos skirtingų Lietuvos archeologinių radimviečių (Stanaičių, Turlojiškių, Žvainių, Nikėlų ir Jurgaičių) įvairios keraminės šukės. Nustatyta, kad skirtingose vietovėse rastos archeologinės keramikos paviršiaus ypatumai, cheminė bei fazinė sudėtis yra nevienodi. Tai gali būti susiję su keraminių dirbinių gamybos technologiniais ypatumais.


References / Nuorodos


[1] G. Biscontin, M.P. Birelli, and E. Zendri, Characterization of binders employed in the manufacture of Venetian historical mortars, J. Cultur. Heritage 3, 31–37 (2002),
http://dx.doi.org/10.1016/S1296-2074(02)01156-1
[2] G.E. De Benedetto, R. Laviano, L. Sabbatini, and P.G. Zambonin, Infrared spectroscopy in the mineralogical characterization of ancient pottery, J. Cultur. Heritage 3, 177–186 (2002),
http://dx.doi.org/10.1016/S1296-2074(02)01178-0
[3] G. Eramo, R. Laviano, I.M. Muntoni, and G. Volpe, Late Roman cooking pottery from the Tavoliere area (Southern Italy): Raw materials and technological aspects, J. Cultur. Heritage 5, 157–165 (2004),
http://dx.doi.org/10.1016/j.culher.2003.05.002
[4] E.P. Bescher, F. Pique, F. Stulik, and J.D. Mackenzie, Long term protection of the last judgment mosaic in Prague, J. Sol–Gel Sci. Technol. 19, 215–218 (2000),
http://dx.doi.org/10.1023/A:1008784221259
[5] R.A. Caruso and M. Antonietti, Sol–gel nanocoating: An approach to the preparation of structured materials, Chem. Mater. 13, 3272–3282 (2001),
http://dx.doi.org/10.1021/cm001257z
[6] L. Nasdala, A. Banerjee, T. Hager, and W. Hofmeister, Laser Raman micro-spectroscopy in mineralogical research, Eur. Microsc. Anal. 3, 11–13 (2001)
[7] A. Bakolas, G. Biscontin, V. Contardi, E. Franceschi, A. Moropoulou, D. Palazzi, and E. Zendri, Thermoanalytical research on traditional mortars in Venice, Thermochim. Acta 269/270, 817–828 (1995),
http://dx.doi.org/10.1016/0040-6031(95)02574-X
[8] F.E. Wagner and U. Wagner, Mössbauer spectra of clays and ceramics, Hyperfine Interactions 154, 35–82 (2004),
http://dx.doi.org/10.1023/B:HYPE.0000032113.42496.f2
[9] P.M. Rice, Pottery Analysis – A Sourcebook (The University of Chicago Press, Chicago, 1987)
[10] J. Kiuberis, A. Merkevicius, R. Juskenas, and A. Kareiva, Preliminary investigation of ceramic materials – particularly important stage for successful conservation of pottery, Mater. Sci. 10, 334–337 (2004),
http://matsc.ktu.lt/index.php/MatSc/article/view/26654
[11] M. Klein, F. Jesse, H.U. Kasper, and A. Golden, Chemical characterization of ancient pottery from Sudan by X-ray fluorescence spectrometry (XRF), electron microprobe analyses (EMPA) and inductively coupled plasma mass spectrometry (ICP-MS), Archaeometry 46, 339–356 (2004),
http://dx.doi.org/10.1111/j.1475-4754.2004.00162.x
[12] P. Goodhew and F. Humphreys, Electron Microscopy and Analysis (Taylor & Francis, London, 1988)
[13] P. Cardiano, S. Ioppolo, C. De Stefano, A. Pettignano, S. Sergi, and P. Piraino, Study and characterization of the ancient bricks of monastery of “San Filippo di Fragala” in Frazzano (Sicily), Anal. Chim. Acta 519, 103–111 (2004),
http://dx.doi.org/10.1016/j.aca.2004.05.042
[14] G. Padeletti, P. Fermo, S. Gilardoni, and A. Galli, Technological study of ancient ceramics produced in Casteldurante (central Italy) during the Renaissance, Appl. Phys. A 79, 335–339 (2004),
http://dx.doi.org/10.1007/s00339-004-2521-5
[15] G. Saviano, D. Pilone, F. Felli, and L. Drago, Surface analyses “impasto rosso” pottery from Southern Etruria and Latium, Surf. Eng. 21, 411–417 (2005),
http://dx.doi.org/10.1179/174329305X64411
[16] C. Stella, Surface alteration and morphological characterization of pottery specimens from a northern Italian Iron Age site, Surf. Eng. 21, 418–423 (2005),
http://dx.doi.org/10.1179/174329305X64420
[17] P. Colomban, N.Q. Liem, G. Sagon, H.X. Tinh, and T.B. Hoanh, Microstructure, composition and processing of 15th century Vietnamese porcelains and celadons, J. Cultur. Heritage 4, 187–197 (2003),
http://dx.doi.org/10.1016/S1296-2074(03)00045-1
[18] P. Colomban, D.N. Khoi, N.Q. Liem, C. Roche, and G. Sagon, Sa Huynh and Cham potteries: Microstructure and likely processing, J. Cultur. Heritage 5, 149–155 (2004),
http://dx.doi.org/10.1016/j.culher.2003.06.005