[PDF]
http://dx.doi.org/10.3952/lithjphys.46311
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 355–359 (2006)
EFFECT OF VAN DER WAALS
INTERACTIONS ON THE PHONON DYNAMICS IN USe
Atul Pandeya and K.S. Upadhyayab
aDepartment of Physics, K. N. Govt. P. G. College
Gyanpur, Sant Ravidas Nagar Bhadohi-221304, Uttar Pradesh, India
bSmt. Indira Gandhi Government Degree College,
Lalganj, Mirzapur, Uttar Pradesh, India
E-mail: kripa1shankar@yahoo.com
Received 28 April 2006
Van der Waals three body force shell model
(vTSM), which includes the effect of van der Waals interactions
(vWI) and three body interactions in the framework of both ions
polarizable rigid shell model (RSM), has been employed to study
the crystal dynamics of USe. We assume that the overlap repulsion
is effective only up to the first neighbour, while the van der
Waals attraction acts up to the second neighbours and plays very
important role. The agreement between our predictions and
experimental data for phonon dispersion curves strongly supports
the inclusion of van der Waals interactions. We also report the
specific heat variations, two phonon IR / Raman spectra, and
anharmonic properties of USe.
Keywords: Lattice vibrational properties, phonons, dispersion
curves
PACS: 63.20.-e, 65.40.Ba, 78.30.-j
VAN DER VALSO SĄVEIKŲ ĮTAKA USe
FONONŲ DINAMIKAI
Atul Pandeya, K.S. Upadhyayab
aValstybinis koledžas, Džanpūras, Indija
bIndiros Gandi valstybinio laipsnio koledžas,
Lalgandžas, Indija
Van der Valso (van der Waals) trijų kūnų
sąveikos sluoksninis modelis, apimantis van der Valso sąveikų
įtaką ir trijų kūnų sąveikas pagal abiejų jonų poliarizuojamų
kietų sluoksnių modelį, panaudotas tirti USe kristalų gardelės
dinamikai. Tariama, kad stūma dėl sanklotos veikia tik pirmuosius
kaimynus, o tuo tarpu van der Valso trauka veikia ir antruosius ir
yra labai svarbi. Teoriškai numatytų rezultatų ir eksperimentiškai
gautų duomenų apie fononų dispersijos kreives sutapimas
patvirtina, kad turi būti atsižvelgiama į van der Valso sąveikas.
Taip pat pateiktos savitosios šilumos variacijos, dvifononiai IR
ir Ramano spektrai ir anharmoninės USe savybės.
References / Nuorodos
[1] J.A. Jackman, T.M. Holden, and W.J.L. Buyers, Systematic study
of the lattice dynamics of the uranium rocksalt-structure compounds,
Phys. Rev. B 33, 7144–7153 (1986),
http://dx.doi.org/10.1103/PhysRevB.33.7144
[2] H. Rudigier, H.R. Ott, and O. Vogt, Low-temperature specific
heat of uranium monopnictides and monochalcogenides, Phys. Rev. B 32,
4584–4591 (1985),
http://dx.doi.org/10.1103/PhysRevB.32.4584
[3] H. Rudigier, H.R. Ott, and O. Vogt, Low-temperature specific
heat of uranium monopnictides and monochalcogenides, Physica B 130,
538–540 (1985),
http://dx.doi.org/10.1016/0378-4363(85)90298-0
[4] P.K. Jha and S.P. Sanyal, Lattice dynamics of uranium
chalcogenides and pnictides, Phys. Rev. B 46, 3664–3667
(1992),
http://dx.doi.org/10.1103/PhysRevB.46.3664
[5] R.K. Singh, Many-body interactions in binary ionic solids, Phys.
Rep. 85, 259–401 (1982),
http://dx.doi.org/10.1016/0370-1573(82)90020-5
[6] P.K. Jha, R.K. Singh, and S.P. Sanyal, Phonon anomalies in
uranium chalcogenides, Physica B 174, 101–104 (1991),
http://dx.doi.org/10.1016/0921-4526(91)90586-4
[7] P.K. Jha and S.P. Sanyal, Lattice vibrational properties of
uranium chalcogenides, Physica B 216, 125–131 (1995),
http://dx.doi.org/10.1016/0921-4526(95)00438-6
[8] V. Nusslein and U. Schroder, Calculations of dispersion curves
and specific heats for LiF and NaCl using the breathing shell model,
Phys. Status Solidi B 21, 309–314 (1967),
http://dx.doi.org/10.1002/pssb.19670210131
[9] K.S. Upadhyaya, M. Yadav, and G.K. Upadhyaya, Lattice dynamics
of IV–VI ionic semiconductors: An application to lead chalcogenides,
Phys. Status Solidi B 229, 1129–1138 (2002),
http://dx.doi.org/10.1002/1521-3951(200202)229:3<1129::AID-PSSB1129>3.0.CO;2-6
[10] K.S. Upadhyaya, Atul Pandey, and D.M. Srivastava, A study of
the phonon properties of uranium monochalcogenides: US as an
example, Chinese J. Phys. 44(20), 127–136 (2006)
[11] C. Smart, G.R. Wilkinson, A.M. Karo, and J.R. Hardy, Lattice
Dynamics, ed. R.F. Wallis (Pergamon Press, Oxford, 1965)
[12] D.S. Puri, V.K. Garg, and M.P. Verma, Many-body effects on
3rd-order elastic constants and pressure derivatives of 2nd-order
elastic constants of CsCl structure solids, Phys. Status Solidi B 78,
113–122 (1976),
http://dx.doi.org/10.1002/pssb.2220780109
[13] L.P. Sharma, PhD thesis, Agra University, Agra, India (1979)