[PDF]    http://dx.doi.org/10.3952/lithjphys.46311

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 355–359 (2006)


EFFECT OF VAN DER WAALS INTERACTIONS ON THE PHONON DYNAMICS IN USe
Atul Pandeya and K.S. Upadhyayab
aDepartment of Physics, K. N. Govt. P. G. College Gyanpur, Sant Ravidas Nagar Bhadohi-221304, Uttar Pradesh, India
bSmt. Indira Gandhi Government Degree College, Lalganj, Mirzapur, Uttar Pradesh, India
E-mail: kripa1shankar@yahoo.com

Received 28 April 2006

Van der Waals three body force shell model (vTSM), which includes the effect of van der Waals interactions (vWI) and three body interactions in the framework of both ions polarizable rigid shell model (RSM), has been employed to study the crystal dynamics of USe. We assume that the overlap repulsion is effective only up to the first neighbour, while the van der Waals attraction acts up to the second neighbours and plays very important role. The agreement between our predictions and experimental data for phonon dispersion curves strongly supports the inclusion of van der Waals interactions. We also report the specific heat variations, two phonon IR / Raman spectra, and anharmonic properties of USe.
Keywords: Lattice vibrational properties, phonons, dispersion curves
PACS: 63.20.-e, 65.40.Ba, 78.30.-j


VAN DER VALSO SĄVEIKŲ ĮTAKA USe FONONŲ DINAMIKAI
Atul Pandeya, K.S. Upadhyayab
aValstybinis koledžas, Džanpūras, Indija
bIndiros Gandi valstybinio laipsnio koledžas, Lalgandžas, Indija

Van der Valso (van der Waals) trijų kūnų sąveikos sluoksninis modelis, apimantis van der Valso sąveikų įtaką ir trijų kūnų sąveikas pagal abiejų jonų poliarizuojamų kietų sluoksnių modelį, panaudotas tirti USe kristalų gardelės dinamikai. Tariama, kad stūma dėl sanklotos veikia tik pirmuosius kaimynus, o tuo tarpu van der Valso trauka veikia ir antruosius ir yra labai svarbi. Teoriškai numatytų rezultatų ir eksperimentiškai gautų duomenų apie fononų dispersijos kreives sutapimas patvirtina, kad turi būti atsižvelgiama į van der Valso sąveikas. Taip pat pateiktos savitosios šilumos variacijos, dvifononiai IR ir Ramano spektrai ir anharmoninės USe savybės.


References / Nuorodos


[1] J.A. Jackman, T.M. Holden, and W.J.L. Buyers, Systematic study of the lattice dynamics of the uranium rocksalt-structure compounds, Phys. Rev. B 33, 7144–7153 (1986),
http://dx.doi.org/10.1103/PhysRevB.33.7144
[2] H. Rudigier, H.R. Ott, and O. Vogt, Low-temperature specific heat of uranium monopnictides and monochalcogenides, Phys. Rev. B 32, 4584–4591 (1985),
http://dx.doi.org/10.1103/PhysRevB.32.4584
[3] H. Rudigier, H.R. Ott, and O. Vogt, Low-temperature specific heat of uranium monopnictides and monochalcogenides, Physica B 130, 538–540 (1985),
http://dx.doi.org/10.1016/0378-4363(85)90298-0
[4] P.K. Jha and S.P. Sanyal, Lattice dynamics of uranium chalcogenides and pnictides, Phys. Rev. B 46, 3664–3667 (1992),
http://dx.doi.org/10.1103/PhysRevB.46.3664
[5] R.K. Singh, Many-body interactions in binary ionic solids, Phys. Rep. 85, 259–401 (1982),
http://dx.doi.org/10.1016/0370-1573(82)90020-5
[6] P.K. Jha, R.K. Singh, and S.P. Sanyal, Phonon anomalies in uranium chalcogenides, Physica B 174, 101–104 (1991),
http://dx.doi.org/10.1016/0921-4526(91)90586-4
[7] P.K. Jha and S.P. Sanyal, Lattice vibrational properties of uranium chalcogenides, Physica B 216, 125–131 (1995),
http://dx.doi.org/10.1016/0921-4526(95)00438-6
[8] V. Nusslein and U. Schroder, Calculations of dispersion curves and specific heats for LiF and NaCl using the breathing shell model, Phys. Status Solidi B 21, 309–314 (1967),
http://dx.doi.org/10.1002/pssb.19670210131
[9] K.S. Upadhyaya, M. Yadav, and G.K. Upadhyaya, Lattice dynamics of IV–VI ionic semiconductors: An application to lead chalcogenides, Phys. Status Solidi B 229, 1129–1138 (2002),
http://dx.doi.org/10.1002/1521-3951(200202)229:3<1129::AID-PSSB1129>3.0.CO;2-6
[10] K.S. Upadhyaya, Atul Pandey, and D.M. Srivastava, A study of the phonon properties of uranium monochalcogenides: US as an example, Chinese J. Phys. 44(20), 127–136 (2006)
[11] C. Smart, G.R. Wilkinson, A.M. Karo, and J.R. Hardy, Lattice Dynamics, ed. R.F. Wallis (Pergamon Press, Oxford, 1965)
[12] D.S. Puri, V.K. Garg, and M.P. Verma, Many-body effects on 3rd-order elastic constants and pressure derivatives of 2nd-order elastic constants of CsCl structure solids, Phys. Status Solidi B 78, 113–122 (1976),
http://dx.doi.org/10.1002/pssb.2220780109
[13] L.P. Sharma, PhD thesis, Agra University, Agra, India (1979)