[PDF]    http://dx.doi.org/10.3952/lithjphys.46312

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 283–293 (2006)


Review
ELECTRICAL PROPERTIES OF HYDRATED VANADIUM COMPOUNDS

V. Bondarenka and A. Pašiškevičius
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: bond@pfi.lt

Received 15 June 2006

Vanadium pentoxide gels have a layered structure, where V–O ribbons are separated by water that permit to intercalate a wide range of various ionic and molecular species into these gels. They have both ionic and electronic conduction. The ionic part is defined by proton diffusion and the electronic one by the electron hopping between vanadium ions of different valence states.
In this review the results of a complex study concerning the physical properties of a wide range of vanadium based hydrated compounds such as H2V12−xMexO31±δ·nH2O (Me = Mo, Ti, Cr), Me2V12O31±δ·nH2O (Me = Li, Na, K, Rb, Cs), and MeV12O31±δ·nH2O (Me = Mg, Ca, Ba) are presented.
The basic attention is given to the description of structure, synthesis, electrical properties, and valence conditions of metal ions in the xerogels.
Keywords: vanadium oxides, hydrates, physical properties
PACS: 73.25.+I, 81.20.Fw, 82.70.Dg


HIDRATUOTŲ VANADŽIO JUNGINIŲ ELEKTRINĖS SAVYBĖS
V. Bondarenka, A. Pašiškevičius
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Vanadžio pentoksido geliai turi sluoksniuotą sandarą, kur V–O sluoksniai atskirti vandens molekulėmis. Tai leidžia įterpti tarp sluoksnių įvairius jonus bei molekules. Elektrinis gelių laidumas turi du sandus – elektroninį, atsirandantį dėl elektronų šuolių tarp įvairiavalenčių jonų, ir protoninį, kurį lemia protonų difuzija.
Pateikti hidratuotų vanadžio junginių, tokių kaip H2V12−xMexO31±δ·nH2O (Me = Mo, Ti, Cr), Me2V12O31±δ·nH2O (Me = Li, Na, K, Rb, Cs) ir MeV12O31±δ·nH2O (Me = Mg, Ca, Ba), kompleksinių tyrimų rezultatai.
Pagrindinis dėmesys skirtas hidratų sandaros, sintezės, elektrinių savybių ypatybėms ir metalų jonų valentingumui.


References / Nuorodos


[1] A.A. Bugayev, B.P. Zakhartchenya, and F.A. Tchudnovskiy, Metal–Insulator Phase Transition and its Application (Nauka, Leningrad, 1979) [in Russian]
[2] A.A. Fotiev, V.L. Volkov, and V.K. Kapustkin, Vanadium Oxide Bronzes (Nauka, Moscow, 1978) [in Russian]
[3] V.L. Volkov, Inculcation Phases Based on Vanadium Oxides (Ural Scientific Centre of USSR Academy of Sciences, Sverdlovsk, 1987) [in Russian]
[4] P.N. Pletnyov, A.A. Ivakin, D.G. Klestchyov, and T.A. Burmistrova, Hydrated Oxides of IV and V Group (Nauka, Moscow, 1986) [in Russian]
[5] J. Livage, Synthesis of polyoxovanadates via “chimie douce”, Coord. Chem. Rev. 178–180(2), 999–1018 (1998),
http://dx.doi.org/10.1016/S0010-8545(98)00105-2
[6] J. Livage and D. Ganguli, Sol–gel electrochromic coating and devices: A review, Solar Energy Mater. Solar Cells 68(3–4), 365–381 (2001),
http://dx.doi.org/10.1016/S0927-0248(00)00369-X
[7] P. Düllberg, Über das Verhalten der Vanadate in wässeriger Lösung, Z. Phys. Chem. 45(2), 129–181 (1903),
http://dx.doi.org/10.1515/zpch-1903-4505
[8] A.B. Berkutov, A.K. Iliasova, and R.A. Geskina, About hydrated vanadium pentoxide, Zh. Neorg. Khim. [J. Inorg. Chem. (USSR)] 7(9), 2134–2139 (1962)
[9] E. Müller, Herstellung kolloider Vanadinsaüre nach einer neuen Dispersionsmethode, Z. Chem. Ind. Kolloide 8(2), 302–303 (1911),
http://dx.doi.org/10.1007/BF01502880
[10] V.L. Volkov, G.S. Zakharova, and V.M. Bondarenka, Simple and Complicated Xerogels of Polyvanadates (Ural Branch of Russian Academy of Sciences, Yekaterinburg, 2001) [in Russian]
[11] P. Aldebert, N. Baffier, N. Gharbi, and J. Livage, Layered structure of vanadium pentoxide gels, Mater. Res. Bull. 16(6), 669–676 (1981),
http://dx.doi.org/10.1016/0025-5408(81)90266-X
[12] H.G. Bachman, F.R. Achmed, and W.H. Barnes, Über Structure von V2O5, Z. Kristallogr. 115(1), 110–131 (1961),
http://dx.doi.org/10.1524/zkri.1961.115.1-2.110
[13] J.-J. Legendre and J. Livage, Vanadium pentoxide xerogels. I. Structural study by electron diffraction, J. Colloid Interface Sci. 94(1), 75–83 (1983),
http://dx.doi.org/10.1016/0021-9797(83)90236-9
[14] J. Bullot, O. Gallais, M. Gauthier, and J. Livage, Semiconducting properties of amorphous V2O5 layers deposited from gels, Appl. Phys. Lett. 36(12), 986–988 (1980),
http://dx.doi.org/10.1063/1.91392
[15] J. Bullot, P. Cordier, O. Gallais, M. Gauthier, and J. Livage, Thin layers deposited from V2O5 gels. I. A conductivity study, J. Non-Cryst. Solids 68(1), 123–134 (1984),
http://dx.doi.org/10.1016/0022-3093(84)90039-5
[16] P. Barboux, N. Baffier, R. Morineau, and J. Livage, Diffusion protonique dans les xerogels de pentoxyde de vanadium, Solid State Ionics 9–10(2), 1073–1080 (1983),
http://dx.doi.org/10.1016/0167-2738(83)90133-9
[17] N.F. Mott and E.A. Davis, Electronic Processes in Noncrystalline Materials (Clarendon Press, Oxford, 1971)
[18] V.A. Ioffe and I.B. Patrina, Comparison of the smallpolaron theory with the experimental data of current transport in V2O5, Phys. Status Solidi 40(1), 389–395 (1970),
http://dx.doi.org/10.1002/pssb.19700400140
[19] A.R. Tourky, Z. Hanafi, and K. Al Zewel, The colour problem of vanadium pentoxide, Z. Phys. Chem. 242(5/6), 305–311 (1969),
http://dx.doi.org/10.1515/zpch-1969-24236
[20] T. Allersma, R. Hakim, T.N. Kennedy, and J.D. Mackenzie, Structure and physical properties of solod and liquid vanadium pentoxide, J. Chem. Phys. 46(1), 154–160 (1967),
http://dx.doi.org/10.1063/1.1840366
[21] J. Schnakenberg, Polaronic impurity hopping conduction, Phys. Status Solidi A 28(2), 623–633 (1968),
http://dx.doi.org/10.1002/pssb.19680280220
[22] L.B. Kiss, K. Bali, T. Szörenyi, and I. Hevesi, Noise measurements on thin films deposited from vanadium pentoxide gels, Solid State Commun. 58(9), 609–611 (1986),
http://dx.doi.org/10.1016/0038-1098(86)90229-2
[23] F. Hooge, 1/f noise, Physica B 83(1), 14–23 (1976),
http://dx.doi.org/10.1016/0378-4363(76)90089-9
[24] B.I. Shklovskii, Theory of 1/f noise for hopping conduction, Solid State Commun. 33(3), 273–276 (1980),
http://dx.doi.org/10.1016/0038-1098(80)91151-5
[25] V. Bondarenka, S. Grebinskij, S. Mickevičius, V. Volkov, and G. Zakharova, Mobility and concentration of charge carriers in H2V12−xMoxO31±y·nH2O xerogels, Lithuanian J. Phys. 36(2), 131–139 (1996)
[26] V. Bondarenka, S. Grebinskij, S. Mickevičius, V. Volkov, and G. Zakharova, Temperature dependences of charge carrier mobility and concentration in H2V10Cr2O31.7·8.6 H2O xerogels, Lithuanian J. Phys. 37(5), 411–415 (1997)
[27] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, and G. Zakharova, Physical properties of the polyvanadium–molybdenum acid xerogels, J. Non-Cryst. Solids 226(1), 1–10 (1998),
http://dx.doi.org/10.1016/S0022-3093(98)00363-9
[28] S.H. Tao, W. Ming-Tang, L. Ping, and Y. Xi, Porosity control of humidity-sensitive ceramics and theoretical model of humidity-sensitive characteristics, Sensors Actuators 19(1), 61–70 (1989),
http://dx.doi.org/10.1016/0250-6874(89)87058-1
[29] D.S. McLachlan, Equations for the conductivity of macroscopic mixtures, J. Phys. C 19(9), 1339–1354 (1986),
http://dx.doi.org/10.1088/0022-3719/19/9/007
[30] S. Grebinskij, V. Bondarenka, and S. Mickevicius, Anisotropy of the conductivity in V2O5 single crystals and layered films deposited from gels, in: Abstracts of the International Conference on “Mass and Charge Transport in Inorganic Materials”, Jesolo Lido, Italy, p. 26 (2000)
[31] V. Volkov, V. Bondarenka, G. Zakharova, R. Bareikiene, N. Grebenschikova, and L. Perelyaeva, Electrical conductivity and IR spectra of MI2(MII)V12O30.7·nH2O, Izv. Akad. Nauk SSSR, Neorg. Mater. [Inorg. Mater. (USSR)] 23(1), 135–138 (1987)
[32] V. Volkov, V. Bondarenka, G. Zakharova, R. Bareikiene, and A. Ivakin, Electrical conductivity of H2V12−xMoxO31±y·nH2O xerogels, Izv. Akad. Nauk SSSR, Neorg. Mater. [Inorg. Mater. (USSR)] 23(1), 139–141 (1987)
[33] S. Grebinskij, V. Bondarenka, and S. Mickevicius, Transport phenomena in layered vanadium pentoxide xerogels, in: Abstracts of the International Conference on “Mass and Charge Transport in Inorganic Materials”, Jesolo Lido, Italy, p. 25 (2000)
[34] N.F. Mott and R.W. Gurney, Electronic Processes in Ionic Crystals (Clarendon Press, Oxford, 1940)
[35] L. Murawski, C.H. Chung, and J.D. Mackenzie, Electrical properties of semiconducting oxide glasses, J. Non-Cryst. Solids 32(1) 91–104 (1979),
http://dx.doi.org/10.1016/0022-3093(79)90066-8
[36] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, and G. Zakharova, Physical properties of the polyvanadium–molybdenum acid xerogels, J. Non-Cryst. Solids 226(1), 1–10 (1998),
http://dx.doi.org/10.1016/S0022-3093(98)00363-9
[37] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, and G. Zakharova, Thin films of polyvanadium–molybdenum acid as starting materials for humidity sensors, Sensors Actuators B 28(3), 227–231 (1995),
http://dx.doi.org/10.1016/0925-4005(95)01726-7
[38] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, and G. Zakharova, The dependence of the electrical properties of the polyvandium–molybdenumacid on the frequency and humidity, Fiz. Tverd. Tela [Phys. Solid State (St. Petersburg)] 37(5), 1429–1437 (1995)
[39] V. Bondarenka, S. Grebinskij, S. Mickevicius, H. Tvardauskas, Z. Martunas, V. Volkov, and G. Zakharova, Conductance versus humidity of vanadium–metal–oxygen layers deposited from gels, Phys. Status Solidi A 169(2), 289–294 (1998)
http://dx.doi.org/10.1002/(SICI)1521-396X(199810)169:2<289::AID-PSSA289>3.3.CO;2-N
[40] V. Bondarenka, S. Grebinskij, S. Mickevicius, H. Tvardauskas, Z. Martunas, V. Volkov, and G. Zakharova, Humidity sensors based on H2V11TiO30.3·nH2O xerogels, Sensors Actuators B 55(1), 60–64 (1999)
http://dx.doi.org/10.1016/S0925-4005(99)00041-6
[41] V. Bondarenka, S. Grebinskij, S. Mickevicius, H. Tvardauskas, Z. Martunas, V. Volkov, and G. Zakharova, Humidity sensors based on vanadium–metal–oxygen layers deposited from gels, in: Proceedings of BEC'98, “The 6th Biennial Conference on Electronics and Microsystem Technology”, Tallin, Estonia, pp. 247–250 (1998)
[42] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, and G. Zakharova, Humidity sensing properties of V2O5 based xerogels, in: Proceedings of the Conference “SeSens 2000”, Veldhoven, the Netherlands, pp. 665–668 (2000)
[43] V. Bondarenka, S. Grebinskij, S. Mickevičius, V. Volkov, and G. Zakharova, Electrical conductivity of vanadium pentoxide xerogels, Lithuanian J. Phys. 42(6), 435–439 (2002)
[44] J. Bulot, O. Gallais, M. Gauthier, and J. Livage, Threshold switching in V2O5 layers deposited from gels, Phys. Status Solidi A 71(1), K1–K4 (1982),
http://dx.doi.org/10.1002/pssa.2210710134
[45] V. Bondarenka, S. Grebinskij, and S. Mickevičius, Switching in layered vanadium pentaoxide xerogels, Lithuanian J. Phys. 35(1), 72–75 (1995)
[46] V. Bondarenka, S. Grebinskij, S. Mickevicius, H. Tvardauskas, and S. Kaciulis, Determination of vanadium valence states in hydrated compounds, J. Alloys Compounds 382(1–2), 239–243 (2004)
http://dx.doi.org/10.1016/j.jallcom.2004.06.005
[47] V. Bondarenka, S. Grebinskij, Z. Martūnas, S. Mickevičius, H. Tvardauskas, S. Kačiulis, L. Pandolfi, V. Volkov, and N. Podvalnaia, Sol–gel synthesis and XPS characterization of vanadium oxide bronzes, Lithuanian J. Phys. 46(2), 185–190 (2006)
http://dx.doi.org/10.3952/lithjphys.46201
[48] V. Bondarenka, V. Volkov, G. Zakharova, S. Kačiulis, and A. Plešanovas, X-ray photoelectron spectroscopy of the polyvanadium acid, Lithuanian J. Phys. 33(2), 71–73 (1993)
[49] V. Bondarenka, S. Kaciulis, A. Pleshanovas, V. Volkov, and G. Zakharova, Photoelectron spectroscopy of poly-vanadium–molybdenum acid, Appl. Surf. Sci. 78(2), 107–112 (1994),
http://dx.doi.org/10.1016/0169-4332(94)90038-8
[50] V. Bondarenka, H. Tvardauskas, Z. Martūnas, S. Grebinskij, S. Mickevičius, V. Volkov, and G. Zakharova, X-ray photoelectron spectroscopy of BaV12O30.7·8.2 H2O xerogels, Lithuanian J. Phys. 36(5), 422–427 (1996)
[51] V. Bondarenka, H. Tvardauskas, Z. Martūnas, S. Grebinskij, S. Mickevičius, V. Volkov, and G. Zakharova, X-ray photoelectron and Auger spectra of Li2V10Mo2O31.6·10.6 H2O xerogels, Lithuanian J. Phys. 37(5), 440–445 (1997)
[52] H. Tvardauskas, V. Bondarenka, Z. Martunas, S. Grebinskij, S. Mickevicius, V. Volkov, and G. Zakharova, Photoelectron spectroscopy of MV12O30.7·nH2O xerogels (M = Mg, Ca, Sr, Ba), Appl. Surf. Sci. 134(2), 229–233 (1998),
http://dx.doi.org/10.1016/S0169-4332(98)00227-X
[53] V. Bondarenka, H. Tvardauskas, Z. Martūnas, S. Grebinskij, S. Mickevičius, V. Volkov, and G. Zakharova, X-ray photoelectron spectroscopy of the polyvanadium–titanium acid, Lithuanian J. Phys. 38(2), 191–195 (1998)
[54] V. Bondarenka, H. Tvardauskas, Z. Martūnas, S. Grebinskij, S. Mickevičius, V. Volkov, and G. Zakharova, Influence of ion bombardment on the metal ion states in Li2V10Mo2O31.6·10.6 H2O surface, Lithuanian J. Phys. 38(3), 307–312 (1998)
[55] H. Yagi and T. Saiki, Humidity sensor using NASICON not containing phosphorus, Sensors Actuators B 5(1), 135–138 (1991),
http://dx.doi.org/10.1016/0925-4005(91)80233-A
[56] H. Hirashima and K. Sudo, Structure and physical properties of V2O5 gels containing GeO2, J. Non-Cryst. Solids 121(1–3), 68–71 (1990),
http://dx.doi.org/10.1016/0022-3093(90)90107-W
[57] H. Masbal, D. Tinet, and M. Crespin, A molecular bronze formed by intercalation of benzidine in V2O5 gels, J. Chem. Soc. Chem. Commun. 14, 935–936 (1985),
http://dx.doi.org/10.1039/c39850000935
[58] M.E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, and H.U. Nissen, Redox-active nanotubes of vanadium oxide, Angewandte Chemie Int. Ed. 37(9), 1263–1265 (1998),
http://dx.doi.org/10.1002/(SICI)1521-3773(19980518)37:9<1263::AID-ANIE1263>3.3.CO;2-I
[59] F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, and R. Nesper, Morphology and topochemical reactions of novel vanadium oxide nanotubes, J. Am. Chem. Soc. 121(36), 8324–8331 (1999),
http://dx.doi.org/10.1021/ja991085a
[60] J.M. Reinoso, H.-J. Muhr, F. Krumeich, F. Bieri, and R. Nesper, Controlled uptake and release of metal cations by vanadium oxide nanotubes, Helv. Chim. Acta 83(8), 1673–2053 (2000),
http://dx.doi.org/10.1002/1522-2675(20000809)83:8<1724::AID-HLCA1724>3.0.CO;2-G