[PDF]
http://dx.doi.org/10.3952/lithjphys.46312
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 283–293 (2006)
Review
ELECTRICAL PROPERTIES OF HYDRATED VANADIUM COMPOUNDS
V. Bondarenka and A. Pašiškevičius
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: bond@pfi.lt
Received 15 June 2006
Vanadium pentoxide gels have a layered
structure, where V–O ribbons are separated by water that permit to
intercalate a wide range of various ionic and molecular species
into these gels. They have both ionic and electronic conduction.
The ionic part is defined by proton diffusion and the electronic
one by the electron hopping between vanadium ions of different
valence states.
In this review the results of a complex study concerning the
physical properties of a wide range of vanadium based hydrated
compounds such as H2V12−xMexO31±δ·nH2O
(Me = Mo, Ti, Cr), Me2V12O31±δ·nH2O
(Me = Li, Na, K, Rb, Cs), and MeV12O31±δ·nH2O
(Me = Mg, Ca, Ba) are presented.
The basic attention is given to the description of structure,
synthesis, electrical properties, and valence conditions of metal
ions in the xerogels.
Keywords: vanadium oxides, hydrates, physical properties
PACS: 73.25.+I, 81.20.Fw, 82.70.Dg
HIDRATUOTŲ VANADŽIO JUNGINIŲ
ELEKTRINĖS SAVYBĖS
V. Bondarenka, A. Pašiškevičius
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Vanadžio pentoksido geliai turi sluoksniuotą
sandarą, kur V–O sluoksniai atskirti vandens molekulėmis. Tai
leidžia įterpti tarp sluoksnių įvairius jonus bei molekules.
Elektrinis gelių laidumas turi du sandus – elektroninį,
atsirandantį dėl elektronų šuolių tarp įvairiavalenčių jonų, ir
protoninį, kurį lemia protonų difuzija.
Pateikti hidratuotų vanadžio junginių, tokių kaip H2V12−xMexO31±δ·nH2O
(Me = Mo, Ti, Cr), Me2V12O31±δ·nH2O
(Me = Li, Na, K, Rb, Cs) ir MeV12O31±δ·nH2O
(Me = Mg, Ca, Ba), kompleksinių tyrimų rezultatai.
Pagrindinis dėmesys skirtas hidratų sandaros, sintezės, elektrinių
savybių ypatybėms ir metalų jonų valentingumui.
References / Nuorodos
[1] A.A. Bugayev, B.P. Zakhartchenya, and F.A. Tchudnovskiy, Metal–Insulator
Phase Transition and its Application (Nauka, Leningrad, 1979)
[in Russian]
[2] A.A. Fotiev, V.L. Volkov, and V.K. Kapustkin, Vanadium Oxide
Bronzes (Nauka, Moscow, 1978) [in Russian]
[3] V.L. Volkov, Inculcation Phases Based on Vanadium Oxides
(Ural Scientific Centre of USSR Academy of Sciences, Sverdlovsk,
1987) [in Russian]
[4] P.N. Pletnyov, A.A. Ivakin, D.G. Klestchyov, and T.A.
Burmistrova, Hydrated Oxides of IV and V Group (Nauka,
Moscow, 1986) [in Russian]
[5] J. Livage, Synthesis of polyoxovanadates via “chimie douce”,
Coord. Chem. Rev. 178–180(2), 999–1018 (1998),
http://dx.doi.org/10.1016/S0010-8545(98)00105-2
[6] J. Livage and D. Ganguli, Sol–gel electrochromic coating and
devices: A review, Solar Energy Mater. Solar Cells 68(3–4),
365–381 (2001),
http://dx.doi.org/10.1016/S0927-0248(00)00369-X
[7] P. Düllberg, Über das Verhalten der Vanadate in wässeriger
Lösung, Z. Phys. Chem. 45(2), 129–181 (1903),
http://dx.doi.org/10.1515/zpch-1903-4505
[8] A.B. Berkutov, A.K. Iliasova, and R.A. Geskina, About hydrated
vanadium pentoxide, Zh. Neorg. Khim. [J. Inorg. Chem. (USSR)] 7(9),
2134–2139 (1962)
[9] E. Müller, Herstellung kolloider Vanadinsaüre nach einer neuen
Dispersionsmethode, Z. Chem. Ind. Kolloide 8(2), 302–303
(1911),
http://dx.doi.org/10.1007/BF01502880
[10] V.L. Volkov, G.S. Zakharova, and V.M. Bondarenka, Simple
and Complicated Xerogels of Polyvanadates (Ural Branch of
Russian Academy of Sciences, Yekaterinburg, 2001) [in Russian]
[11] P. Aldebert, N. Baffier, N. Gharbi, and J. Livage, Layered
structure of vanadium pentoxide gels, Mater. Res. Bull. 16(6),
669–676 (1981),
http://dx.doi.org/10.1016/0025-5408(81)90266-X
[12] H.G. Bachman, F.R. Achmed, and W.H. Barnes, Über Structure von
V2O5, Z. Kristallogr. 115(1), 110–131
(1961),
http://dx.doi.org/10.1524/zkri.1961.115.1-2.110
[13] J.-J. Legendre and J. Livage, Vanadium pentoxide xerogels. I.
Structural study by electron diffraction, J. Colloid Interface Sci.
94(1), 75–83 (1983),
http://dx.doi.org/10.1016/0021-9797(83)90236-9
[14] J. Bullot, O. Gallais, M. Gauthier, and J. Livage,
Semiconducting properties of amorphous V2O5
layers deposited from gels, Appl. Phys. Lett. 36(12),
986–988 (1980),
http://dx.doi.org/10.1063/1.91392
[15] J. Bullot, P. Cordier, O. Gallais, M. Gauthier, and J. Livage,
Thin layers deposited from V2O5 gels. I. A
conductivity study, J. Non-Cryst. Solids 68(1), 123–134
(1984),
http://dx.doi.org/10.1016/0022-3093(84)90039-5
[16] P. Barboux, N. Baffier, R. Morineau, and J. Livage, Diffusion
protonique dans les xerogels de pentoxyde de vanadium, Solid State
Ionics 9–10(2), 1073–1080 (1983),
http://dx.doi.org/10.1016/0167-2738(83)90133-9
[17] N.F. Mott and E.A. Davis, Electronic Processes in
Noncrystalline Materials (Clarendon Press, Oxford, 1971)
[18] V.A. Ioffe and I.B. Patrina, Comparison of the smallpolaron
theory with the experimental data of current transport in V2O5,
Phys. Status Solidi 40(1), 389–395 (1970),
http://dx.doi.org/10.1002/pssb.19700400140
[19] A.R. Tourky, Z. Hanafi, and K. Al Zewel, The colour problem of
vanadium pentoxide, Z. Phys. Chem. 242(5/6), 305–311 (1969),
http://dx.doi.org/10.1515/zpch-1969-24236
[20] T. Allersma, R. Hakim, T.N. Kennedy, and J.D. Mackenzie,
Structure and physical properties of solod and liquid vanadium
pentoxide, J. Chem. Phys. 46(1), 154–160 (1967),
http://dx.doi.org/10.1063/1.1840366
[21] J. Schnakenberg, Polaronic impurity hopping conduction, Phys.
Status Solidi A 28(2), 623–633 (1968),
http://dx.doi.org/10.1002/pssb.19680280220
[22] L.B. Kiss, K. Bali, T. Szörenyi, and I. Hevesi, Noise
measurements on thin films deposited from vanadium pentoxide gels,
Solid State Commun. 58(9), 609–611 (1986),
http://dx.doi.org/10.1016/0038-1098(86)90229-2
[23] F. Hooge, 1/f noise, Physica B 83(1), 14–23 (1976),
http://dx.doi.org/10.1016/0378-4363(76)90089-9
[24] B.I. Shklovskii, Theory of 1/f noise for hopping
conduction, Solid State Commun. 33(3), 273–276 (1980),
http://dx.doi.org/10.1016/0038-1098(80)91151-5
[25] V. Bondarenka, S. Grebinskij, S. Mickevičius, V. Volkov, and G.
Zakharova, Mobility and concentration of charge carriers in H2V12−xMoxO31±y·nH2O
xerogels, Lithuanian J. Phys. 36(2), 131–139 (1996)
[26] V. Bondarenka, S. Grebinskij, S. Mickevičius, V. Volkov, and G.
Zakharova, Temperature dependences of charge carrier mobility and
concentration in H2V10Cr2O31.7·8.6
H2O xerogels, Lithuanian J. Phys. 37(5), 411–415
(1997)
[27] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, and G.
Zakharova, Physical properties of the polyvanadium–molybdenum acid
xerogels, J. Non-Cryst. Solids 226(1), 1–10 (1998),
http://dx.doi.org/10.1016/S0022-3093(98)00363-9
[28] S.H. Tao, W. Ming-Tang, L. Ping, and Y. Xi, Porosity control of
humidity-sensitive ceramics and theoretical model of
humidity-sensitive characteristics, Sensors Actuators 19(1),
61–70 (1989),
http://dx.doi.org/10.1016/0250-6874(89)87058-1
[29] D.S. McLachlan, Equations for the conductivity of macroscopic
mixtures, J. Phys. C 19(9), 1339–1354 (1986),
http://dx.doi.org/10.1088/0022-3719/19/9/007
[30] S. Grebinskij, V. Bondarenka, and S. Mickevicius, Anisotropy of
the conductivity in V2O5 single crystals and
layered films deposited from gels, in: Abstracts of the
International Conference on “Mass and Charge Transport in
Inorganic Materials”, Jesolo Lido, Italy, p. 26 (2000)
[31] V. Volkov, V. Bondarenka, G. Zakharova, R. Bareikiene, N.
Grebenschikova, and L. Perelyaeva, Electrical conductivity and IR
spectra of MI2(MII)V12O30.7·nH2O,
Izv. Akad. Nauk SSSR, Neorg. Mater. [Inorg. Mater. (USSR)] 23(1),
135–138 (1987)
[32] V. Volkov, V. Bondarenka, G. Zakharova, R. Bareikiene, and A.
Ivakin, Electrical conductivity of H2V12−xMoxO31±y·nH2O
xerogels, Izv. Akad. Nauk SSSR, Neorg. Mater. [Inorg. Mater. (USSR)]
23(1), 139–141 (1987)
[33] S. Grebinskij, V. Bondarenka, and S. Mickevicius, Transport
phenomena in layered vanadium pentoxide xerogels, in: Abstracts
of the International Conference on “Mass and Charge Transport in
Inorganic Materials”, Jesolo Lido, Italy, p. 25 (2000)
[34] N.F. Mott and R.W. Gurney, Electronic Processes in Ionic
Crystals (Clarendon Press, Oxford, 1940)
[35] L. Murawski, C.H. Chung, and J.D. Mackenzie, Electrical
properties of semiconducting oxide glasses, J. Non-Cryst. Solids 32(1)
91–104 (1979),
http://dx.doi.org/10.1016/0022-3093(79)90066-8
[36] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, and G.
Zakharova, Physical properties of the polyvanadium–molybdenum acid
xerogels, J. Non-Cryst. Solids 226(1), 1–10 (1998),
http://dx.doi.org/10.1016/S0022-3093(98)00363-9
[37] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, and G.
Zakharova, Thin films of polyvanadium–molybdenum acid as starting
materials for humidity sensors, Sensors Actuators B 28(3),
227–231 (1995),
http://dx.doi.org/10.1016/0925-4005(95)01726-7
[38] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, and G.
Zakharova, The dependence of the electrical properties of the
polyvandium–molybdenumacid on the frequency and humidity, Fiz.
Tverd. Tela [Phys. Solid State (St. Petersburg)] 37(5),
1429–1437 (1995)
[39] V. Bondarenka, S. Grebinskij, S. Mickevicius, H. Tvardauskas,
Z. Martunas, V. Volkov, and G. Zakharova, Conductance versus
humidity of vanadium–metal–oxygen layers deposited from gels, Phys.
Status Solidi A 169(2), 289–294 (1998)
http://dx.doi.org/10.1002/(SICI)1521-396X(199810)169:2<289::AID-PSSA289>3.3.CO;2-N
[40] V. Bondarenka, S. Grebinskij, S. Mickevicius, H. Tvardauskas,
Z. Martunas, V. Volkov, and G. Zakharova, Humidity sensors based on
H2V11TiO30.3·nH2O
xerogels, Sensors Actuators B 55(1), 60–64 (1999)
http://dx.doi.org/10.1016/S0925-4005(99)00041-6
[41] V. Bondarenka, S. Grebinskij, S. Mickevicius, H. Tvardauskas,
Z. Martunas, V. Volkov, and G. Zakharova, Humidity sensors based on
vanadium–metal–oxygen layers deposited from gels, in: Proceedings
of BEC'98, “The 6th Biennial Conference on Electronics and
Microsystem Technology”, Tallin, Estonia, pp. 247–250 (1998)
[42] V. Bondarenka, S. Grebinskij, S. Mickevicius, V. Volkov, and G.
Zakharova, Humidity sensing properties of V2O5
based xerogels, in: Proceedings of the Conference “SeSens 2000”,
Veldhoven, the Netherlands, pp. 665–668 (2000)
[43] V. Bondarenka, S. Grebinskij, S. Mickevičius, V. Volkov, and G.
Zakharova, Electrical conductivity of vanadium pentoxide xerogels,
Lithuanian J. Phys. 42(6), 435–439 (2002)
[44] J. Bulot, O. Gallais, M. Gauthier, and J. Livage, Threshold
switching in V2O5 layers deposited from gels,
Phys. Status Solidi A 71(1), K1–K4 (1982),
http://dx.doi.org/10.1002/pssa.2210710134
[45] V. Bondarenka, S. Grebinskij, and S. Mickevičius, Switching in
layered vanadium pentaoxide xerogels, Lithuanian J. Phys. 35(1),
72–75 (1995)
[46] V. Bondarenka, S. Grebinskij, S. Mickevicius, H. Tvardauskas,
and S. Kaciulis, Determination of vanadium valence states in
hydrated compounds, J. Alloys Compounds 382(1–2), 239–243
(2004)
http://dx.doi.org/10.1016/j.jallcom.2004.06.005
[47] V. Bondarenka, S. Grebinskij, Z. Martūnas, S. Mickevičius, H.
Tvardauskas, S. Kačiulis, L. Pandolfi, V. Volkov, and N. Podvalnaia,
Sol–gel synthesis and XPS characterization of vanadium oxide
bronzes, Lithuanian J. Phys. 46(2), 185–190 (2006)
http://dx.doi.org/10.3952/lithjphys.46201
[48] V. Bondarenka, V. Volkov, G. Zakharova, S. Kačiulis, and A.
Plešanovas, X-ray photoelectron spectroscopy of the polyvanadium
acid, Lithuanian J. Phys. 33(2), 71–73 (1993)
[49] V. Bondarenka, S. Kaciulis, A. Pleshanovas, V. Volkov, and G.
Zakharova, Photoelectron spectroscopy of poly-vanadium–molybdenum
acid, Appl. Surf. Sci. 78(2), 107–112 (1994),
http://dx.doi.org/10.1016/0169-4332(94)90038-8
[50] V. Bondarenka, H. Tvardauskas, Z. Martūnas, S. Grebinskij, S.
Mickevičius, V. Volkov, and G. Zakharova, X-ray photoelectron
spectroscopy of BaV12O30.7·8.2 H2O
xerogels, Lithuanian J. Phys. 36(5), 422–427 (1996)
[51] V. Bondarenka, H. Tvardauskas, Z. Martūnas, S. Grebinskij, S.
Mickevičius, V. Volkov, and G. Zakharova, X-ray photoelectron and
Auger spectra of Li2V10Mo2O31.6·10.6
H2O xerogels, Lithuanian J. Phys. 37(5), 440–445
(1997)
[52] H. Tvardauskas, V. Bondarenka, Z. Martunas, S. Grebinskij, S.
Mickevicius, V. Volkov, and G. Zakharova, Photoelectron spectroscopy
of MV12O30.7·nH2O xerogels
(M = Mg, Ca, Sr, Ba), Appl. Surf. Sci. 134(2), 229–233
(1998),
http://dx.doi.org/10.1016/S0169-4332(98)00227-X
[53] V. Bondarenka, H. Tvardauskas, Z. Martūnas, S. Grebinskij, S.
Mickevičius, V. Volkov, and G. Zakharova, X-ray photoelectron
spectroscopy of the polyvanadium–titanium acid, Lithuanian J. Phys.
38(2), 191–195 (1998)
[54] V. Bondarenka, H. Tvardauskas, Z. Martūnas, S. Grebinskij, S.
Mickevičius, V. Volkov, and G. Zakharova, Influence of ion
bombardment on the metal ion states in Li2V10Mo2O31.6·10.6
H2O surface, Lithuanian J. Phys. 38(3), 307–312
(1998)
[55] H. Yagi and T. Saiki, Humidity sensor using NASICON not
containing phosphorus, Sensors Actuators B 5(1), 135–138
(1991),
http://dx.doi.org/10.1016/0925-4005(91)80233-A
[56] H. Hirashima and K. Sudo, Structure and physical properties of
V2O5 gels containing GeO2, J.
Non-Cryst. Solids 121(1–3), 68–71 (1990),
http://dx.doi.org/10.1016/0022-3093(90)90107-W
[57] H. Masbal, D. Tinet, and M. Crespin, A molecular bronze formed
by intercalation of benzidine in V2O5 gels, J.
Chem. Soc. Chem. Commun. 14, 935–936 (1985),
http://dx.doi.org/10.1039/c39850000935
[58] M.E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, and
H.U. Nissen, Redox-active nanotubes of vanadium oxide, Angewandte
Chemie Int. Ed. 37(9), 1263–1265 (1998),
http://dx.doi.org/10.1002/(SICI)1521-3773(19980518)37:9<1263::AID-ANIE1263>3.3.CO;2-I
[59] F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B.
Schnyder, and R. Nesper, Morphology and topochemical reactions of
novel vanadium oxide nanotubes, J. Am. Chem. Soc. 121(36),
8324–8331 (1999),
http://dx.doi.org/10.1021/ja991085a
[60] J.M. Reinoso, H.-J. Muhr, F. Krumeich, F. Bieri, and R. Nesper,
Controlled uptake and release of metal cations by vanadium oxide
nanotubes, Helv. Chim. Acta 83(8), 1673–2053 (2000),
http://dx.doi.org/10.1002/1522-2675(20000809)83:8<1724::AID-HLCA1724>3.0.CO;2-G