[PDF]
http://dx.doi.org/10.3952/lithjphys.46313
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 375–382 (2006)
KINETICS OF Cs SORPTION TO CLAY
MINERALS
G. Lujanienėa, K. Mažeikaa, J. Šapolaitėa,
A. Amulevičiusa, and S. Motiejūnasb
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: lujaniene@ar.fi.lt
bVilnius Gediminas Technical University,
Saulėtekio al. 11, LT-10223, Vilnius, Lithuania
Received 4 May 2006
Preliminary data of kinetic sorption
experiments are presented. Batch sorption experiments with the aim
of estimation of distribution coefficient (Kd) values were
conducted using natural clay minerals from the Šaltiškiai quarry
and two sets of solutions with different caesium concentrations (C(Cs)
= 2.30·10−10 mol/l and C(Cs) = 6.80·10−5
mol/l). Kinetic sorption experiments indicated insignificant
variation of sorption parameters depending on the chemical
composition of groundwater and clay minerals. Speciation studies
showed the high content (up to 70%) of exchangeable caesium in
experiments with high caesium concentrations. Results of kinetic
tracer experiments and sequential extraction studies revealed
differences in sorption mechanisms depending on the Cs
concentration. Data obtained from sorption–desorption experiments
were used to model sorption process by applying the kinetic 4-box
model to describe the cation exchange processes on three sites of
clay minerals with distinctly different selectivity. The obtained
forward and backward exchange rate constants were used to
calculate apparent equilibrium constants, which ranged from 1 to
26 and the highest ones were found for reversible sites.
Keywords: Cs, distribution coefficients (Kd),
apparent equilibrium constants (Kap), clay
minerals, radioactive waste
PACS: 28.41.Kw, 82.33.-z, 82.80.Ej, 82.80.Jp
Cs GERTIES MOLIO MINERALAIS
KINETIKA
G. Lujanienėa, K. Mažeikaa, J. Šapolaitėa,
A. Amulevičiusa, S. Motiejūnasb
aFizikos institutas, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas,
Vilnius, Lietuva
Pateikti parengtiniai gerties kinetikos
eksperimentinių tyrimų rezultatai. Naudojant natūralaus molio
ėminius iš Šaltiškių karjero (šiaurės Lietuva) ir dviejų skirtingų
cezio koncentracijų (C(Cs) = 2,30·10−10 mol/l ir
C(Cs) = 6,80·10−5 mol/l) tirpalus, buvo
eksperimentiškai tirta gertis Cs pasiskirstymo koeficientams (Kd)
įvertinti. Iš tų tyrimų rezultatų paaiškėjo, kad priklausomai nuo
gruntinio vandens ir molio mineralų cheminės sudėties gerties
parametrai kinta nežymiai. Eksperimentuojant su didelėmis cezio
koncentracijomis, buvo aptiktas didelis (iki 70%) pakaitinio cezio
kiekis. Kinetikos eksperimentų ir nuoseklios ekstrakcijos tyrimų
rezultatai atskleidė gerties mechanizmų skirtumų priklausomybę nuo
Cs koncentracijos. Rezultatai, gauti iš gerties–atvirkštinės
gerties eksperimentų, buvo naudojami gerties vyksmams modeliuoti,
taikant kinetinį keturių dėžučių modelį, atvaizduojantį katijonų
mainų vyksmus trijose molio mineralų gerties vietose, kur gerai
išreikšti atrankumo skirtumai. Surastos gerties reakcijų spartos
konstantos buvo naudojamos apskaičiuojant pusiausvyros konstantas,
kurios kito nuo 1 iki 26. Didžiausios jų vertės gautos mineralų
grįžtamosios gerties vietose.
References / Nuorodos
[1] T. Kozaki, H. Sato, S. Sato, and H. Ohashi, Diffusion mechanism
of caesium in compacted montmorillonite, Engineering Geology 54,
223–230 (1999),
http://dx.doi.org/10.1016/S0013-7952(99)00077-0
[2] J.L. Krumhansl, P.V. Brady, and H.L. Anderson, Reactive barriers
for 137Cs retention, J. Contam. Hydrol. 47, 233–240
(2001),
http://dx.doi.org/10.1016/S0169-7722(00)00152-2
[3] R.M. Cornell, Adsorption of cesium on minerals: A review, J.
Radioanal. Nucl. Chem., Articles 171, 483–500 (1993),
http://dx.doi.org/10.1007/BF02219872
[4] A. Rigol, M. Vidal, G. Rauret, C.A. Shand, and M.V. Cheshire,
Competition of organic and mineral phases in radiocesium
partitioning in organic soils of Scotland and the area near
Chernobyl, Environ. Sci. Technol. 32, 663–669 (1998),
http://dx.doi.org/10.1021/es970672y
[5] A.B. Hird, D.L. Rimmer, and F.R. Livens, Total caesium-fixing
potentials of acid organic soils, J. Environ. Radioactivity 26,
103–118 (1995),
http://dx.doi.org/10.1016/0265-931X(94)00012-L
[6] C. Dumat, H. Quiquampoix, and S. Stauton, Adsorption of cesium
by synthetic clay–organic matter complexes: Effect of the nature of
organic polymers, Environ. Sci. Technol. 34, 2985–2989
(2000),
http://dx.doi.org/10.1021/es990657o
[7] B.C. Bostick, M.A. Vairavamurthy, Karthikeyan, and J. Chorover,
Cesium adsorption on clay minerals: An EXAFS spectroscopic
investigation, Environ. Sci. Technol. 36, 2670–2676 (2002),
http://dx.doi.org/10.1021/es0156892
[8] E. Brouwer, B. Baeyens, A. Maes, and A. Cremers, Cesium and
rubidium ion equilibria in illite clay, J. Phys. Chem. 87,
1213–1219 (1983),
http://dx.doi.org/10.1021/j100230a024
[9] M.H. Bradbury and B. Baeyens, A generalised sorption model for
the concentration dependent uptake of caesium by argillaceous rocks,
J. Contam. Hydrol. 42, 141–163 (2000),
http://dx.doi.org/10.1016/S0169-7722(99)00094-7
[10] C. Liu, J.M. Zachara, and S.C. Smith, A cation exchange model
to describe Cs+ sorption at high ionic strength in
subsurface sediments at Hanford site, USA, J. Contam. Hydrol. 68,
217–238 (2004),
http://dx.doi.org/10.1016/S0169-7722(03)00143-8
[11] C. Poinssot, B. Baeyens, and M.H. Bradbury, Experimental and
modeling studies of caesium sorption on illite, Geochim. Cosmochim.
Acta 63, 3217–3227 (1999),
http://dx.doi.org/10.1016/S0016-7037(99)00246-X
[12] J.M. Zachara, S.C. Smith, C. Liu, J.P. McKinley, R.J. Serne,
and P.L. Gassman, Sorption of Cs+ to micaceous subsurface
sediments from the Hanford site, USA, Geochim. Cosmochim. Acta 66,
193–211 (2002),
http://dx.doi.org/10.1016/S0016-7037(01)00759-1
[13] C.I. Steefel, S. Carroll, P. Zhao, and S. Roberts, Cesium
migration in Hanford sediment: A multisite cation exchange model
based on laboratory transport experiments, J. Contam. Hydrol. 67,
219–246 (2003),
http://dx.doi.org/10.1016/S0169-7722(03)00033-0
[14] Characterisation of Materials Suitable for Engineering
Barriers of Near Surface Repository of Radioactive Waste
(Vilnius, Ecofirma, 2004) [in Lithuanian]
[15] G. Lujanienė, J. Šapolaitė, A. Amulevičius, K. Mažeika, and S.
Motiejūnas, Retention of cesium, plutonium and americium by
engineered and natural barriers, Czech J. Phys. (2006, in press),
http://dx.doi.org/10.1007/s10582-006-1005-6
[16] Measurement data of the Lithuanian state air monitoring,
http://aaa.am.lt/
[17] K.M. Krupka, D.I. Kaplan, G. Wheland, R.J. Serne, and S.V.
Mattigod, Understanding variation in partition coefficients, Kd,
values, EPA Report 402-R-99-004A (US Environment Protection
Agency, Office of Air and Radiation, Washington, 1999)
[18] A. Sahuquillo, A. Rigol, and G. Rauret, Overview of the use of
leaching / extraction tests for risk assessment of trace metals in
contaminated soils and sediments, Trends in Anal. Chem. 22,
152–159 (2003),
http://dx.doi.org/10.1016/S0165-9936(03)00303-0
[19] G. Rauret, J.F. Lopez-Sanchez, A. Sahuquillo, R. Rubio, C.
Davidson, A. Ure, and Ph. Quevauviller, Improvement of the BCR three
step sequention extraction procedure prior to the sertification of
new sediment and soil reference material, J. Environ. Monitor. 1,
57–61 (1999),
http://dx.doi.org/10.1039/a807854h
[20] D.J. Bunker, J.T. Smith, F.R. Livens, and J. Hilton,
Determination of radionuclide exchangeability in freshwater systems,
Sci. Technol. 263, 171–183 (2000),
http://dx.doi.org/10.1016/S0048-9697(00)00701-4
[21] A. de Koning and R.N.J. Comans, Reversibility of radiocaesium
sorption on illite, Geochim. Cosmochim. Acta 68, 2815–2823
(2004),
http://dx.doi.org/10.1016/j.gca.2003.12.025
[22] G. Lujanienė, S. Motiejūnas, J. Šapolaitė, and Z. Kamarauskas,
Cs and Pu migration through engineered and natural barriers,
Lithuanian J. Phys. 45, 273–280 (2005),
http://dx.doi.org/10.3952/lithjphys.45410
[23] G. Lujanienė, S. Motiejūnas, and J. Šapolaitė, Sorption of Cs,
Pu and Am on clay minerals, J. Radioanal. Nucl. Chem. (2006, in
press),
http://dx.doi.org/10.1007/s10967-007-1121-1
[24] G. Bader and P. Deuflhard, A semi-implicit mid-point rule for
stiff systems of ODE, Numerische Mathematik 41, 373–398
(1983),
http://dx.doi.org/10.1007/BF01418331