[PDF]    http://dx.doi.org/10.3952/lithjphys.46313

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 375–382 (2006)


KINETICS OF Cs SORPTION TO CLAY MINERALS
G. Lujanienėa, K. Mažeikaa, J. Šapolaitėa, A. Amulevičiusa, and S. Motiejūnasb
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: lujaniene@ar.fi.lt
bVilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania

Received 4 May 2006

Preliminary data of kinetic sorption experiments are presented. Batch sorption experiments with the aim of estimation of distribution coefficient (Kd) values were conducted using natural clay minerals from the Šaltiškiai quarry and two sets of solutions with different caesium concentrations (C(Cs) = 2.30·10−10 mol/l and C(Cs) = 6.80·10−5 mol/l). Kinetic sorption experiments indicated insignificant variation of sorption parameters depending on the chemical composition of groundwater and clay minerals. Speciation studies showed the high content (up to 70%) of exchangeable caesium in experiments with high caesium concentrations. Results of kinetic tracer experiments and sequential extraction studies revealed differences in sorption mechanisms depending on the Cs concentration. Data obtained from sorption–desorption experiments were used to model sorption process by applying the kinetic 4-box model to describe the cation exchange processes on three sites of clay minerals with distinctly different selectivity. The obtained forward and backward exchange rate constants were used to calculate apparent equilibrium constants, which ranged from 1 to 26 and the highest ones were found for reversible sites.
Keywords: Cs, distribution coefficients (Kd), apparent equilibrium constants (Kap), clay minerals, radioactive waste
PACS: 28.41.Kw, 82.33.-z, 82.80.Ej, 82.80.Jp


Cs GERTIES MOLIO MINERALAIS KINETIKA
G. Lujanienėa, K. Mažeikaa, J. Šapolaitėa, A. Amulevičiusa, S. Motiejūnasb
aFizikos institutas, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Pateikti parengtiniai gerties kinetikos eksperimentinių tyrimų rezultatai. Naudojant natūralaus molio ėminius iš Šaltiškių karjero (šiaurės Lietuva) ir dviejų skirtingų cezio koncentracijų (C(Cs) = 2,30·10−10 mol/l ir C(Cs) = 6,80·10−5 mol/l) tirpalus, buvo eksperimentiškai tirta gertis Cs pasiskirstymo koeficientams (Kd) įvertinti. Iš tų tyrimų rezultatų paaiškėjo, kad priklausomai nuo gruntinio vandens ir molio mineralų cheminės sudėties gerties parametrai kinta nežymiai. Eksperimentuojant su didelėmis cezio koncentracijomis, buvo aptiktas didelis (iki 70%) pakaitinio cezio kiekis. Kinetikos eksperimentų ir nuoseklios ekstrakcijos tyrimų rezultatai atskleidė gerties mechanizmų skirtumų priklausomybę nuo Cs koncentracijos. Rezultatai, gauti iš gerties–atvirkštinės gerties eksperimentų, buvo naudojami gerties vyksmams modeliuoti, taikant kinetinį keturių dėžučių modelį, atvaizduojantį katijonų mainų vyksmus trijose molio mineralų gerties vietose, kur gerai išreikšti atrankumo skirtumai. Surastos gerties reakcijų spartos konstantos buvo naudojamos apskaičiuojant pusiausvyros konstantas, kurios kito nuo 1 iki 26. Didžiausios jų vertės gautos mineralų grįžtamosios gerties vietose.


References / Nuorodos


[1] T. Kozaki, H. Sato, S. Sato, and H. Ohashi, Diffusion mechanism of caesium in compacted montmorillonite, Engineering Geology 54, 223–230 (1999),
http://dx.doi.org/10.1016/S0013-7952(99)00077-0
[2] J.L. Krumhansl, P.V. Brady, and H.L. Anderson, Reactive barriers for 137Cs retention, J. Contam. Hydrol. 47, 233–240 (2001),
http://dx.doi.org/10.1016/S0169-7722(00)00152-2
[3] R.M. Cornell, Adsorption of cesium on minerals: A review, J. Radioanal. Nucl. Chem., Articles 171, 483–500 (1993),
http://dx.doi.org/10.1007/BF02219872
[4] A. Rigol, M. Vidal, G. Rauret, C.A. Shand, and M.V. Cheshire, Competition of organic and mineral phases in radiocesium partitioning in organic soils of Scotland and the area near Chernobyl, Environ. Sci. Technol. 32, 663–669 (1998),
http://dx.doi.org/10.1021/es970672y
[5] A.B. Hird, D.L. Rimmer, and F.R. Livens, Total caesium-fixing potentials of acid organic soils, J. Environ. Radioactivity 26, 103–118 (1995),
http://dx.doi.org/10.1016/0265-931X(94)00012-L
[6] C. Dumat, H. Quiquampoix, and S. Stauton, Adsorption of cesium by synthetic clay–organic matter complexes: Effect of the nature of organic polymers, Environ. Sci. Technol. 34, 2985–2989 (2000),
http://dx.doi.org/10.1021/es990657o
[7] B.C. Bostick, M.A. Vairavamurthy, Karthikeyan, and J. Chorover, Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation, Environ. Sci. Technol. 36, 2670–2676 (2002),
http://dx.doi.org/10.1021/es0156892
[8] E. Brouwer, B. Baeyens, A. Maes, and A. Cremers, Cesium and rubidium ion equilibria in illite clay, J. Phys. Chem. 87, 1213–1219 (1983),
http://dx.doi.org/10.1021/j100230a024
[9] M.H. Bradbury and B. Baeyens, A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks, J. Contam. Hydrol. 42, 141–163 (2000),
http://dx.doi.org/10.1016/S0169-7722(99)00094-7
[10] C. Liu, J.M. Zachara, and S.C. Smith, A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Hanford site, USA, J. Contam. Hydrol. 68, 217–238 (2004),
http://dx.doi.org/10.1016/S0169-7722(03)00143-8
[11] C. Poinssot, B. Baeyens, and M.H. Bradbury, Experimental and modeling studies of caesium sorption on illite, Geochim. Cosmochim. Acta 63, 3217–3227 (1999),
http://dx.doi.org/10.1016/S0016-7037(99)00246-X
[12] J.M. Zachara, S.C. Smith, C. Liu, J.P. McKinley, R.J. Serne, and P.L. Gassman, Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA, Geochim. Cosmochim. Acta 66, 193–211 (2002),
http://dx.doi.org/10.1016/S0016-7037(01)00759-1
[13] C.I. Steefel, S. Carroll, P. Zhao, and S. Roberts, Cesium migration in Hanford sediment: A multisite cation exchange model based on laboratory transport experiments, J. Contam. Hydrol. 67, 219–246 (2003),
http://dx.doi.org/10.1016/S0169-7722(03)00033-0
[14] Characterisation of Materials Suitable for Engineering Barriers of Near Surface Repository of Radioactive Waste (Vilnius, Ecofirma, 2004) [in Lithuanian]
[15] G. Lujanienė, J. Šapolaitė, A. Amulevičius, K. Mažeika, and S. Motiejūnas, Retention of cesium, plutonium and americium by engineered and natural barriers, Czech J. Phys. (2006, in press),
http://dx.doi.org/10.1007/s10582-006-1005-6
[16] Measurement data of the Lithuanian state air monitoring, 
http://aaa.am.lt/
[17] K.M. Krupka, D.I. Kaplan, G. Wheland, R.J. Serne, and S.V. Mattigod, Understanding variation in partition coefficients, Kd, values, EPA Report 402-R-99-004A (US Environment Protection Agency, Office of Air and Radiation, Washington, 1999)
[18] A. Sahuquillo, A. Rigol, and G. Rauret, Overview of the use of leaching / extraction tests for risk assessment of trace metals in contaminated soils and sediments, Trends in Anal. Chem. 22, 152–159 (2003),
http://dx.doi.org/10.1016/S0165-9936(03)00303-0
[19] G. Rauret, J.F. Lopez-Sanchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure, and Ph. Quevauviller, Improvement of the BCR three step sequention extraction procedure prior to the sertification of new sediment and soil reference material, J. Environ. Monitor. 1, 57–61 (1999),
http://dx.doi.org/10.1039/a807854h
[20] D.J. Bunker, J.T. Smith, F.R. Livens, and J. Hilton, Determination of radionuclide exchangeability in freshwater systems, Sci. Technol. 263, 171–183 (2000),
http://dx.doi.org/10.1016/S0048-9697(00)00701-4
[21] A. de Koning and R.N.J. Comans, Reversibility of radiocaesium sorption on illite, Geochim. Cosmochim. Acta 68, 2815–2823 (2004),
http://dx.doi.org/10.1016/j.gca.2003.12.025
[22] G. Lujanienė, S. Motiejūnas, J. Šapolaitė, and Z. Kamarauskas, Cs and Pu migration through engineered and natural barriers, Lithuanian J. Phys. 45, 273–280 (2005),
http://dx.doi.org/10.3952/lithjphys.45410
[23] G. Lujanienė, S. Motiejūnas, and J. Šapolaitė, Sorption of Cs, Pu and Am on clay minerals, J. Radioanal. Nucl. Chem. (2006, in press),
http://dx.doi.org/10.1007/s10967-007-1121-1
[24] G. Bader and P. Deuflhard, A semi-implicit mid-point rule for stiff systems of ODE, Numerische Mathematik 41, 373–398 (1983),
http://dx.doi.org/10.1007/BF01418331