[PDF]
http://dx.doi.org/10.3952/lithjphys.46315
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 331–339 (2006)
DOSE-DEPENDENT RECOMBINATION IN
SILICON IRRADIATED BY GAMMA RAYS AS DETERMINED BY MICROWAVE
ABSORPTION TRANSIENTS
J. Vaitkusa, Z. Lib, J. Härkönenc,
and E. Gaubasa
aInstitute of Materials Science and Applied
Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius,
Lithuania
E-mail: eugenijus.gaubas@ff.vu.lt
bBrookhaven National Laboratory, Upton, NY
11973-5000, USA
cHelsinki Institute of Physics, Helsinki
University, Finland and CERN / PH, 1211 Geneva, Switzerland
Received 14 September 2006
Variation of carrier lifetime in magnetic
Czochralski and float zone silicon irradiated with Co-60 γ-rays
was investigated for doses in the range from 50 to 400 MRad. The
inverse carrier lifetime was found to increase approximately
linearly with dose and the carrier capture cross-section has been
determined. The recombination and trapping constituents within
recombination transients have been distinguished by combining
analyses of the excess carrier decays measured using microwave
absorption by free carriers for different excitation conditions
and temperatures. The activation energies of traps and
recombination centres have been determined from the carrier
lifetime dependence on temperature.
Keywords: carrier recombination and trapping, radiation
defects, silicon
PACS: 72.20.Jv
KRŪVININKŲ REKOMBINACIJOS
DOZINIAI KITIMAI γ SPINDULIUOTE APŠVITINTAME Si, IŠTIRTI
NENUOSTOVIOSIOS MIKROBANGŲ SUGERTIES BŪDU
J. Vaitkusa, Z. Lib, J. Härkönenc,
E. Gaubasa
aVilniaus universiteto Medžiagotyros ir taikomųjų
mokslų institutas, Vilnius, Lietuva
bBrukheiveno nacionalinė laboratorija, Aptonas,
Niujoroko valstija, JAV
cHelsinkio universitetas, Helsinkis, Suomija ir
CERN, Ženeva, Šveicarija
Ištirti rekombinacijos parametrų doziniai ir
temperatūriniai kitimai Si, apšvitintame γ spinduliuote, siekiant
atskleisti vyraujančių radiacinių defektų susidarymo ypatumus.
Aptikta, kad nepusiausvirųjų krūvininkų tankio relaksacijos
būdingos trukmės mažėja kvazitiesiškai su γ spinduliuotės
apšvitos doze. Krūvininkų tankio relaksacijos sandai sietini su
rekombinacijos bei prilipimo vyksmais ir lemia ryškius trukmių
kitimus, kaitaliojant bandinio temperatūrą tarp 100 ir 350 K.
Temperatūrinės aktyvacijos spektre aptiktos efektinės trukmės
kitimų smailės, iš kurių įvertinti krūvininkų gaudyklių
parametrai. Aptariami vyraujantys radiaciniai defektai sietini su
aptiktais rekombinacijos būdingųjų dydžių kitimais.
References / Nuorodos
[1] Z. Li, H.W. Kraner, E. Verbitskaya, V. Eremin, A. Ivanov, M.
Rattaggi, P.G. Rancoita, F.A. Rubinelli, S.J. Fonash, C. Dale, and
P. Marshall, Investigation of the oxygen-vacancy (A-centre) defect
complex profile in neutron irradiated high resistivity silicon
junction particle detectors, IEEE Trans. Nucl. Sci. 39,
1730–1738 (1992),
http://dx.doi.org/10.1109/23.211360
[2] G. Lindström, M. Ahmed, S. Albergo, et al., Radiation hard
silicon detectors—developments by the RD48 (ROSE) collaboration,
Nucl. Instrum. Methods A 466, 308–326 (2001),
http://dx.doi.org/10.1016/S0168-9002(01)00560-5
[3] RD50 Status Report 2002 / 2003, CERN-LHCC-2003-058
[4] M. Moll, J. Adey, A. Al-Ajili, et al., Development of radiation
tolerant semiconductor detectors for the Super-LHC, Nucl. Instrum.
Methods A 546, 99–107 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.044
[5] J. Härkönen, E. Tuovinen, P. Luukka, L. Kauppinen, Z. Li, M.
Moll, A. Bates, and K. Kaska, Proton irradiation results of p+/n–/n+
Cz-Si detectors processed on p-type boron doped substrates with
thermal donor induced space charge sign inversion, Nucl. Instrum.
Methods A 552, 43–48 (2005),
http://dx.doi.org/10.1016/j.nima.2005.06.004
[6] Z. Li, M. Bruzzi, V. Eremin, J. Härkönen, J. Kierstead, P.
Luukka, D. Menichelli, E. Tuominen, E. Tuovinen, and E. Verbitskaya,
Gamma radiation induced space charge sign inversion and re-inversion
in p-type MCZ Si detectors and in proton-irradiated n-type
MCZ Si detectors, Nucl. Instrum. Methods A 552, 34–42
(2005),
http://dx.doi.org/10.1016/j.nima.2005.06.003
[7] T.O. Niinikoski, M. Abreu , P. Anbinderis, et al.,
Low-temperature tracking detectors, Nucl. Instrum. Methods A 520,
87–92 (2004),
http://dx.doi.org/10.1016/j.nima.2003.11.228
[8] E. Gaubas, Transient absorption techniques for investigation of
recombination properties in semiconductor materials, Lithuanian J.
Phys. 43, 145–165 (2003); E. Gaubas, J. Vaitkus, E. Simoen,
C. Claeys, and J. Vanhellemont, Excess carrier cross-sectional
technique for determination of the surface recombination velocity,
Mater. Sci. Semicond. Processing 4, 125–131 (2001),
http://dx.doi.org/10.1016/S1369-8001(00)00140-2
[9] S.M. Ryvkin, Photoelectronic Effects in Semiconductors
(Consulting Bureau, New York, 1964), ch. 6
[10] Z. Li, J. Harkonen, W. Chen, J. Kirstaed, P. Luukka, E.
Tuominen, et al., Radiation hardness of high resistivity magnetic
Czochralski silicon detector after gamma, neutron and proton
irradiations, IEEE Trans. Nucl. Sci. 51, 1901–1908 (2004),
http://dx.doi.org/10.1109/TNS.2004.832685
[11] A. Sassella, A. Borghesi, and T. Abe, Quantitative evaluation
of precipitated oxygen in silicon by infrared spectroscopy, J.
Electrochem. Soc. 145, 1715–1719 (1998),
http://dx.doi.org/10.1149/1.1838545
[12] E. Simoen, C. Claeys, R. Loo, O. De Gryse, P. Clauws, R. Job,
A.G. Ulyashin, and W. Fahrner, Characterisation of oxygen and
oxygen-related defects in highly- and lowly-doped silicon, Mater.
Sci. Eng. B 102, 207–212 (2003),
http://dx.doi.org/10.1016/S0921-5107(02)00706-7
[13] Annual book of ASTM standards, F 1188-93 (ASTM,
Philadelphia, 1993)
[14] V. Eremin, E. Verbitskaya, and Z. Li, Effect of radiation
induced deep level traps on Si detector performance, Nucl. Instrum.
Methods A 476, 537–549 (2002),
http://dx.doi.org/10.1016/S0168-9002(01)01640-0
[15] W.M. Chen, B. Monemar, and E. Janzen, Direct observation of
intercentre charge transfer in dominant nonradiative recombination
channels in silicon, Phys. Rev. Lett. 61, 1914–1917 (1991),
http://dx.doi.org/10.1103/PhysRevLett.67.1914
[16] A. Chantre, Introduction to defect bistability, Appl. Phys. A 48,
3–9 (1989),
http://dx.doi.org/10.1007/BF00617758