[PDF]    http://dx.doi.org/10.3952/lithjphys.46315

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 331–339 (2006)


DOSE-DEPENDENT RECOMBINATION IN SILICON IRRADIATED BY GAMMA RAYS AS DETERMINED BY MICROWAVE ABSORPTION TRANSIENTS
J. Vaitkusa, Z. Lib, J. Härkönenc, and E. Gaubasa
aInstitute of Materials Science and Applied Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: eugenijus.gaubas@ff.vu.lt
bBrookhaven National Laboratory, Upton, NY 11973-5000, USA
cHelsinki Institute of Physics, Helsinki University, Finland and CERN / PH, 1211 Geneva, Switzerland

Received 14 September 2006

Variation of carrier lifetime in magnetic Czochralski and float zone silicon irradiated with Co-60 γ-rays was investigated for doses in the range from 50 to 400 MRad. The inverse carrier lifetime was found to increase approximately linearly with dose and the carrier capture cross-section has been determined. The recombination and trapping constituents within recombination transients have been distinguished by combining analyses of the excess carrier decays measured using microwave absorption by free carriers for different excitation conditions and temperatures. The activation energies of traps and recombination centres have been determined from the carrier lifetime dependence on temperature.
Keywords: carrier recombination and trapping, radiation defects, silicon
PACS: 72.20.Jv


KRŪVININKŲ REKOMBINACIJOS DOZINIAI KITIMAI γ SPINDULIUOTE APŠVITINTAME Si, IŠTIRTI NENUOSTOVIOSIOS MIKROBANGŲ SUGERTIES BŪDU
J. Vaitkusa, Z. Lib, J. Härkönenc, E. Gaubasa
aVilniaus universiteto Medžiagotyros ir taikomųjų mokslų institutas, Vilnius, Lietuva
bBrukheiveno nacionalinė laboratorija, Aptonas, Niujoroko valstija, JAV
cHelsinkio universitetas, Helsinkis, Suomija ir CERN, Ženeva, Šveicarija

Ištirti rekombinacijos parametrų doziniai ir temperatūriniai kitimai Si, apšvitintame γ spinduliuote, siekiant atskleisti vyraujančių radiacinių defektų susidarymo ypatumus. Aptikta, kad nepusiausvirųjų krūvininkų tankio relaksacijos būdingos trukmės mažėja kvazitiesiškai su γ spinduliuotės apšvitos doze. Krūvininkų tankio relaksacijos sandai sietini su rekombinacijos bei prilipimo vyksmais ir lemia ryškius trukmių kitimus, kaitaliojant bandinio temperatūrą tarp 100 ir 350 K. Temperatūrinės aktyvacijos spektre aptiktos efektinės trukmės kitimų smailės, iš kurių įvertinti krūvininkų gaudyklių parametrai. Aptariami vyraujantys radiaciniai defektai sietini su aptiktais rekombinacijos būdingųjų dydžių kitimais.


References / Nuorodos


[1] Z. Li, H.W. Kraner, E. Verbitskaya, V. Eremin, A. Ivanov, M. Rattaggi, P.G. Rancoita, F.A. Rubinelli, S.J. Fonash, C. Dale, and P. Marshall, Investigation of the oxygen-vacancy (A-centre) defect complex profile in neutron irradiated high resistivity silicon junction particle detectors, IEEE Trans. Nucl. Sci. 39, 1730–1738 (1992),
http://dx.doi.org/10.1109/23.211360
[2] G. Lindström, M. Ahmed, S. Albergo, et al., Radiation hard silicon detectors—developments by the RD48 (ROSE) collaboration, Nucl. Instrum. Methods A 466, 308–326 (2001),
http://dx.doi.org/10.1016/S0168-9002(01)00560-5
[3] RD50 Status Report 2002 / 2003, CERN-LHCC-2003-058
[4] M. Moll, J. Adey, A. Al-Ajili, et al., Development of radiation tolerant semiconductor detectors for the Super-LHC, Nucl. Instrum. Methods A 546, 99–107 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.044
[5] J. Härkönen, E. Tuovinen, P. Luukka, L. Kauppinen, Z. Li, M. Moll, A. Bates, and K. Kaska, Proton irradiation results of p+/n/n+ Cz-Si detectors processed on p-type boron doped substrates with thermal donor induced space charge sign inversion, Nucl. Instrum. Methods A 552, 43–48 (2005),
http://dx.doi.org/10.1016/j.nima.2005.06.004
[6] Z. Li, M. Bruzzi, V. Eremin, J. Härkönen, J. Kierstead, P. Luukka, D. Menichelli, E. Tuominen, E. Tuovinen, and E. Verbitskaya, Gamma radiation induced space charge sign inversion and re-inversion in p-type MCZ Si detectors and in proton-irradiated n-type MCZ Si detectors, Nucl. Instrum. Methods A 552, 34–42 (2005),
http://dx.doi.org/10.1016/j.nima.2005.06.003
[7] T.O. Niinikoski, M. Abreu , P. Anbinderis, et al., Low-temperature tracking detectors, Nucl. Instrum. Methods A 520, 87–92 (2004),
http://dx.doi.org/10.1016/j.nima.2003.11.228
[8] E. Gaubas, Transient absorption techniques for investigation of recombination properties in semiconductor materials, Lithuanian J. Phys. 43, 145–165 (2003); E. Gaubas, J. Vaitkus, E. Simoen, C. Claeys, and J. Vanhellemont, Excess carrier cross-sectional technique for determination of the surface recombination velocity, Mater. Sci. Semicond. Processing 4, 125–131 (2001),
http://dx.doi.org/10.1016/S1369-8001(00)00140-2
[9] S.M. Ryvkin, Photoelectronic Effects in Semiconductors (Consulting Bureau, New York, 1964), ch. 6
[10] Z. Li, J. Harkonen, W. Chen, J. Kirstaed, P. Luukka, E. Tuominen, et al., Radiation hardness of high resistivity magnetic Czochralski silicon detector after gamma, neutron and proton irradiations, IEEE Trans. Nucl. Sci. 51, 1901–1908 (2004),
http://dx.doi.org/10.1109/TNS.2004.832685
[11] A. Sassella, A. Borghesi, and T. Abe, Quantitative evaluation of precipitated oxygen in silicon by infrared spectroscopy, J. Electrochem. Soc. 145, 1715–1719 (1998),
http://dx.doi.org/10.1149/1.1838545
[12] E. Simoen, C. Claeys, R. Loo, O. De Gryse, P. Clauws, R. Job, A.G. Ulyashin, and W. Fahrner, Characterisation of oxygen and oxygen-related defects in highly- and lowly-doped silicon, Mater. Sci. Eng. B 102, 207–212 (2003),
http://dx.doi.org/10.1016/S0921-5107(02)00706-7
[13] Annual book of ASTM standards, F 1188-93 (ASTM, Philadelphia, 1993)
[14] V. Eremin, E. Verbitskaya, and Z. Li, Effect of radiation induced deep level traps on Si detector performance, Nucl. Instrum. Methods A 476, 537–549 (2002),
http://dx.doi.org/10.1016/S0168-9002(01)01640-0
[15] W.M. Chen, B. Monemar, and E. Janzen, Direct observation of intercentre charge transfer in dominant nonradiative recombination channels in silicon, Phys. Rev. Lett. 61, 1914–1917 (1991),
http://dx.doi.org/10.1103/PhysRevLett.67.1914
[16] A. Chantre, Introduction to defect bistability, Appl. Phys. A 48, 3–9 (1989),
http://dx.doi.org/10.1007/BF00617758