[PDF]    http://dx.doi.org/10.3952/lithjphys.46403

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 441–445 (2006)


DIELECTRIC RELAXATION STUDY OF ETHYL ACRYLATE–ALCOHOL MIXTURES USING TIME DOMAIN REFLECTOMETRY
P. Sivagurunathana, K. Dharmalingama, K. Ramachandrana, B. Prabhakar Undreb, P.W. Khiradeb, and S.C. Mehrotrac
aDepartment of Physics, Annamalai University, Annamalai Nagar-608002, Tamilnadu, India
E-mail: mukdhar97@rediffmail.com
bDepartment of Physics, Dr. B.A. Marathwada University, Aurangabad-431004, Maharashtra, India
cDepartment of Electronics and Computer Science, Dr. B.A. Marathwada University, Aurangabad-431004, Maharashtra, India

Received 27 September 2006

Dielectric relaxation measurements on ethyl acrylate–alcohol (1-propanol, 1-butanol, 1-hexanol, and 1-octanol) mixtures for different concentrations over the frequency range 10 MHz–10 GHz have been carried out using time domain reflectometry. Parameters such as the static permittivity, dielectric relaxation time, the Kirkwood correlation factor, and the excess inverse relaxation time were determined and discussed to yield information on the molecular structure and dynamics of the mixture. The values of the dielectric properties decrease with increased ethyl acrylate concentration in alcohol and systematically vary with the alkyl chain length of alcohols. The excess inverse relaxation time values are found to be negative for all concentrations, it may indicate that the effective dipoles of the system rotate slowly.
Keywords: dielectric, time domain reflectometry, alcohols, ethyl acrylate
PACS: 77.22.Ch, 77.22.Gm, 77.84.Nh


ETILO AKRILATO IR ALKOHOLIO MIŠINIŲ DIELEKTRINĖS RELAKSACIJOS TYRIMAS, NAUDOJANT LAIKINĘ REFLEKTOMETRIJĄ
P. Sivagurunathana, K. Dharmalingama, K. Ramachandrana, B. Prabhakar Undreb, P.W. Khiradeb, S.C. Mehrotrab
aAnamalai universitetas, Anamalai Nagaras, Tamilnadu, Indija
bDr. B.A. Marathwada universitetas, Aurangabadas, Maharaštra, Indija

Pateikti etilo akrilato ir alkoholio mišinių (1-propanolio, 1-butanolio, 1-heksanolio ir 1-oktanolio) dielektrinės relaksacijos matavimų duomenys 10 MHz–10 GHz dažnių ruože, panaudojant reflektometriją laike. Išmatuoti ir aptarti tokie parametrai, kaip statinė dielektrinė skvarba, dielektrinės relaksacijos trukmė, Kirkvudo (Kirkwood) koreliacijos faktorius bei relaksacijos trukmė, kurie leidžia gauti naują informaciją apie molekulių sandarą mišiniuose ir mišinių dinamiką. Atrasta, kad dielektrinė konstanta mažėja, didinant etilo akrilato koncentaciją alkoholyje, o alkoholio grandinėlių ilgis sistematiškai keičiasi. Rasta, kad perteklinės relaksacijos trukmės vertės yra neigiamos esant visoms koncentracijoms, kas liudija, kad dipolių sukimasis mišiniuose yra lėtas. 


References / Nuorodos


[1] C.E. Schildknecht, Vinyl and Related Polymers (Wiley, New York, 1977).
 
[2] P.E. Savage, Chem. Rev. Washington, D.C. 99, 603 (1999).
https://doi.org/10.1021/cr9700989
 
[3] R.M. Shirke, A. Chaudhari, N.M. More, and P.B. Patil, J. Chem. Eng. Data 45, 917 (2000).
https://doi.org/10.1021/je000066+
 
[4] R.M. Shirke, A. Chaudhari, N.M. More, and P.B. Patil, J. Mol. Liq. 94, 27 (2001).
https://doi.org/10.1016/S0167-7322(01)00239-2
 
[5] S.P. Patil, A. Chaudhari, M.P. Lokhande, M.K. Lande, A.G. Shankarwar, S.N. Helambe, B.R. Arbad, and S.C. Mehrotra, J. Chem. Eng. Data 44, 875 (1999).
https://doi.org/10.1021/je980250j
 
[6] P.W. Khirade, A. Chaudhari, J.B. Shinde, S.N. Helambe, and S.C. Mehrotra, J. Chem. Eng. Data 44, 879 (1999).
https://doi.org/10.1021/je980118j
 
[7] P.W. Khirade, A. Chaudhari, J.B. Shinde, S.N. Helambe, and S.C. Mehrotra, J. Solution Chem. 28, 1031 (1999).
https://doi.org/10.1023/A:1022666128166
 
[8] A. Chaudhari and S.C. Mehrotra, Mol. Phys. 100, 3907 (2002).
https://doi.org/10.1080/0026897021000023668
 
[9] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, Z. Phys. Chem. 219, 1385 (2005).
https://doi.org/10.1524/zpch.2005.219.10_2005.1385
 
[10] K. Dharmalingam and K. Ramachandran, Phys. Chem. Liq. 44, 77 (2006).
https://doi.org/10.1080/00319100500337229
 
[11] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, Spectrochim. Acta, Part A 64, 127 (2006).
https://doi.org/10.1016/j.saa.2005.07.005
 
[12] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, Z. Phys. Chem. 219, 1635 (2005).
https://doi.org/10.1524/zpch.2005.219.12.1635
 
[13] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, Indian J. Pure Appl. Phys. 43, 905 (2005).
 
[14] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, Indian J. Phys. 79, 1403 (2005).
 
[15] K. Dharmalingam, K. Ramachandran, and P. Sivagurunathan, Z. Phys. Chem. 220, 739 (2006).
https://doi.org/10.1524/zpch.2006.220.6.739
 
[16] K. Dharmalingam, K. Ramachandran, and P. Sivagurunathan, Main Group Chem. 4, 241 (2005).
https://doi.org/10.1080/10241220600649745
 
[17] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, J. Solution Chem. 35, 1467 (2006).
https://doi.org/10.1007/s10953-006-9076-3
 
[18] K. Dharmalingam, K. Ramachandran, and P. Sivagurunathan, Spectrochim. Acta, Part A (in press).
 
[19] A.I. Vogal, Text Book of Practical Organic Chemistry, 3rd Ed. (Longman, London, 1957).
 
[20] H.A. Samulon, Proc. IRE 39, 175 (1951).
https://doi.org/10.1109/JRPROC.1951.231438
 
[21] C.E. Shannon, Proc. IRE 37, 10 (1949).
https://doi.org/10.1109/JRPROC.1949.232969
 
[22] R.H. Cole, J.G. Berbarian, S. Mashimo, G. Chryssikos, A. Burns, and E. Tombari, J. Appl. Phys. 66, 793 (1989).
https://doi.org/10.1063/1.343499
 
[23] P. Debye, Polar Molecules (The Chemical Catalog Co., Inc., New York, 1929).
 
[24] P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
 
[25] D. Balamurugan, S. Kumar, and S. Krishnan, J. Mol. Liq. 122, 11 (2005).
https://doi.org/10.1016/j.molliq.2004.11.004
 
[26] S.L. Abd-El-Messieh, M.G. Mohamed, A.M. Mazrouaa, and A. Soliman, J. Appl. Polym. Sci. 85, 271 (2002).
https://doi.org/10.1002/app.10572
 
[27] P. Sivagurunathan, K. Dharmalingam, K. Ramachandran, B. Prabhakar Undre, P.W. Khirade, and S.C. Mehrotra, Philos. Mag. Lett. 86, 291 (2006).
https://doi.org/10.1080/09500830600743856
 
[28] J.G. Kirkwood, J. Chem. Phys. 7, 911 (1939).
https://doi.org/10.1063/1.1750343
 
[29] S.M. Puranik, A.C. Kumbharakhane, and S.C. Mehrotra, J. Mol. Liq. 50, 143 (1991).
https://doi.org/10.1016/0167-7322(91)80042-3
 
[30] K. Dharmalingam, K. Ramachandran, P. Sivagurunathan, B. Prabhakar Undre, P.W. Khirade, and S.C. Mehrotra, Mol. Phys. 104, 2835 (2006).
https://doi.org/10.1080/00268970600842737
 
[31] P. Sivagurunathan, K. Dharmalingam, K. Ramachandran, B. Prabhakar Undre, P.W. Khirade, and S.C. Mehrotra, Physica B (in press).