[PDF]
http://dx.doi.org/10.3952/lithjphys.46403
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 441–445 (2006)
DIELECTRIC RELAXATION STUDY OF
ETHYL ACRYLATE–ALCOHOL MIXTURES USING TIME DOMAIN REFLECTOMETRY
P. Sivagurunathana, K. Dharmalingama, K.
Ramachandrana, B. Prabhakar Undreb, P.W.
Khiradeb, and S.C. Mehrotrac
aDepartment of Physics, Annamalai University,
Annamalai Nagar-608002, Tamilnadu, India
E-mail: mukdhar97@rediffmail.com
bDepartment of Physics, Dr. B.A. Marathwada
University, Aurangabad-431004, Maharashtra, India
cDepartment of Electronics and Computer Science, Dr.
B.A. Marathwada University, Aurangabad-431004, Maharashtra,
India
Received 27 September 2006
Dielectric relaxation measurements
on ethyl acrylate–alcohol (1-propanol, 1-butanol, 1-hexanol, and
1-octanol) mixtures for different concentrations over the
frequency range 10 MHz–10 GHz have been carried out using time
domain reflectometry. Parameters such as the static permittivity,
dielectric relaxation time, the Kirkwood correlation factor, and
the excess inverse relaxation time were determined and discussed
to yield information on the molecular structure and dynamics of
the mixture. The values of the dielectric properties decrease with
increased ethyl acrylate concentration in alcohol and
systematically vary with the alkyl chain length of alcohols. The
excess inverse relaxation time values are found to be negative for
all concentrations, it may indicate that the effective dipoles of
the system rotate slowly.
Keywords: dielectric, time domain
reflectometry, alcohols, ethyl acrylate
PACS: 77.22.Ch, 77.22.Gm, 77.84.Nh
ETILO AKRILATO IR ALKOHOLIO
MIŠINIŲ DIELEKTRINĖS RELAKSACIJOS TYRIMAS, NAUDOJANT LAIKINĘ
REFLEKTOMETRIJĄ
P. Sivagurunathana, K. Dharmalingama, K.
Ramachandrana, B. Prabhakar Undreb, P.W.
Khiradeb, S.C. Mehrotrab
aAnamalai universitetas, Anamalai Nagaras,
Tamilnadu, Indija
bDr. B.A. Marathwada universitetas,
Aurangabadas, Maharaštra, Indija
Pateikti etilo akrilato ir alkoholio mišinių
(1-propanolio, 1-butanolio, 1-heksanolio ir 1-oktanolio)
dielektrinės relaksacijos matavimų duomenys 10 MHz–10 GHz dažnių
ruože, panaudojant reflektometriją laike. Išmatuoti ir aptarti
tokie parametrai, kaip statinė dielektrinė skvarba, dielektrinės
relaksacijos trukmė, Kirkvudo (Kirkwood) koreliacijos faktorius
bei relaksacijos trukmė, kurie leidžia gauti naują informaciją
apie molekulių sandarą mišiniuose ir mišinių dinamiką. Atrasta,
kad dielektrinė konstanta mažėja, didinant etilo akrilato
koncentaciją alkoholyje, o alkoholio grandinėlių ilgis
sistematiškai keičiasi. Rasta, kad perteklinės relaksacijos
trukmės vertės yra neigiamos esant visoms koncentracijoms, kas
liudija, kad dipolių sukimasis mišiniuose yra lėtas.
References / Nuorodos
[1] C.E. Schildknecht, Vinyl and Related Polymers (Wiley, New York,
1977).
[2] P.E. Savage, Chem. Rev. Washington, D.C. 99, 603 (1999).
https://doi.org/10.1021/cr9700989
[3] R.M. Shirke, A. Chaudhari, N.M. More, and P.B. Patil, J. Chem.
Eng. Data 45, 917 (2000).
https://doi.org/10.1021/je000066+
[4] R.M. Shirke, A. Chaudhari, N.M. More, and P.B. Patil, J. Mol.
Liq. 94, 27 (2001).
https://doi.org/10.1016/S0167-7322(01)00239-2
[5] S.P. Patil, A. Chaudhari, M.P. Lokhande, M.K. Lande, A.G.
Shankarwar, S.N. Helambe, B.R. Arbad, and S.C. Mehrotra, J. Chem.
Eng. Data 44, 875 (1999).
https://doi.org/10.1021/je980250j
[6] P.W. Khirade, A. Chaudhari, J.B. Shinde, S.N. Helambe, and S.C.
Mehrotra, J. Chem. Eng. Data 44, 879 (1999).
https://doi.org/10.1021/je980118j
[7] P.W. Khirade, A. Chaudhari, J.B. Shinde, S.N. Helambe, and S.C.
Mehrotra, J. Solution Chem. 28, 1031 (1999).
https://doi.org/10.1023/A:1022666128166
[8] A. Chaudhari and S.C. Mehrotra, Mol. Phys. 100, 3907 (2002).
https://doi.org/10.1080/0026897021000023668
[9] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, Z.
Phys. Chem. 219, 1385 (2005).
https://doi.org/10.1524/zpch.2005.219.10_2005.1385
[10] K. Dharmalingam and K. Ramachandran, Phys. Chem. Liq. 44, 77
(2006).
https://doi.org/10.1080/00319100500337229
[11] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran,
Spectrochim. Acta, Part A 64, 127 (2006).
https://doi.org/10.1016/j.saa.2005.07.005
[12] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, Z.
Phys. Chem. 219, 1635 (2005).
https://doi.org/10.1524/zpch.2005.219.12.1635
[13] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, Indian
J. Pure Appl. Phys. 43, 905 (2005).
[14] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, Indian
J. Phys. 79, 1403 (2005).
[15] K. Dharmalingam, K. Ramachandran, and P. Sivagurunathan, Z.
Phys. Chem. 220, 739 (2006).
https://doi.org/10.1524/zpch.2006.220.6.739
[16] K. Dharmalingam, K. Ramachandran, and P. Sivagurunathan, Main
Group Chem. 4, 241 (2005).
https://doi.org/10.1080/10241220600649745
[17] P. Sivagurunathan, K. Dharmalingam, and K. Ramachandran, J.
Solution Chem. 35, 1467 (2006).
https://doi.org/10.1007/s10953-006-9076-3
[18] K. Dharmalingam, K. Ramachandran, and P. Sivagurunathan,
Spectrochim. Acta, Part A (in press).
[19] A.I. Vogal, Text Book of Practical Organic Chemistry, 3rd Ed.
(Longman, London, 1957).
[20] H.A. Samulon, Proc. IRE 39, 175 (1951).
https://doi.org/10.1109/JRPROC.1951.231438
[21] C.E. Shannon, Proc. IRE 37, 10 (1949).
https://doi.org/10.1109/JRPROC.1949.232969
[22] R.H. Cole, J.G. Berbarian, S. Mashimo, G. Chryssikos, A. Burns,
and E. Tombari, J. Appl. Phys. 66, 793 (1989).
https://doi.org/10.1063/1.343499
[23] P. Debye, Polar Molecules (The Chemical Catalog Co., Inc., New
York, 1929).
[24] P.R. Bevington, Data Reduction and Error Analysis for the
Physical Sciences (McGraw-Hill, New York, 1969).
[25] D. Balamurugan, S. Kumar, and S. Krishnan, J. Mol. Liq. 122, 11
(2005).
https://doi.org/10.1016/j.molliq.2004.11.004
[26] S.L. Abd-El-Messieh, M.G. Mohamed, A.M. Mazrouaa, and A.
Soliman, J. Appl. Polym. Sci. 85, 271 (2002).
https://doi.org/10.1002/app.10572
[27] P. Sivagurunathan, K. Dharmalingam, K. Ramachandran, B.
Prabhakar Undre, P.W. Khirade, and S.C. Mehrotra, Philos. Mag. Lett.
86, 291 (2006).
https://doi.org/10.1080/09500830600743856
[28] J.G. Kirkwood, J. Chem. Phys. 7, 911 (1939).
https://doi.org/10.1063/1.1750343
[29] S.M. Puranik, A.C. Kumbharakhane, and S.C. Mehrotra, J. Mol.
Liq. 50, 143 (1991).
https://doi.org/10.1016/0167-7322(91)80042-3
[30] K. Dharmalingam, K. Ramachandran, P. Sivagurunathan, B.
Prabhakar Undre, P.W. Khirade, and S.C. Mehrotra, Mol. Phys. 104,
2835 (2006).
https://doi.org/10.1080/00268970600842737
[31] P. Sivagurunathan, K. Dharmalingam, K. Ramachandran, B.
Prabhakar Undre, P.W. Khirade, and S.C. Mehrotra, Physica B (in
press).