[PDF]
http://dx.doi.org/10.3952/lithjphys.46405
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 505–512 (2006)
MULTIELEMENT ANALYTICAL
SPECTROMETRY AS A DATA SOURCE FOR CORRELATIVE CLASSIFICATION OF
SAMPLES
P. Serapinas and Ž. Ežerinskis
Joint Isotope Analysis Laboratory, Institute of Theoretical
Physics and Astronomy of Vilnius University, A. Goštauto 12,
LT-01108 Vilnius, Lithuania
E-mail: serapinas@pfi.lt
Received 21 July 2006
Fast increase of correlations
between the concentrations of elements is observed when diversity
of the sample sources decreases. Data of high resolution sector
field ICP MS (inductively coupled plasma mass spectrometry)
measurements of concentrations of 25 elements in wines were tested
in the present study. As much as about ten or more pairs of
correlating elements (correlation coefficient r > 0.9)
were found for different wines of similar provenance. Correlation
pattern is batch and sample specific. It represents the similar
sources of elements, similar element quantity governing processes.
If the number of the correlating pairs of elements is large, the
mean within this list correlation coefficient can be calculated
for individual samples, relative to the values of concentrations
characteristic of different batches, and it can be used for
identification of samples. Data on good potential for
applicability of such individual sample-specific correlative
characteristics in testing the provenance of samples are presented
as examples.
Keywords: multielement mass
spectrometry, correlation, pattern recognition
PACS: 02.50.Sk, 07.05.Kf, 07.05.Rm, 82.80.Ms
DAUGIAELEMENTĖS ANALIZINĖS
SPEKTROMETRIJOS TAIKYMAS KORELIACINIAM BANDINIŲ KLASIFIKAVIMUI
P. Serapinas, Ž. Ežerinskis
Jungtinė izotopinės analizės laboratorija, VU Teorinės fizikos
ir astronomijos institutas, Vilnius, Lietuva
Pastebimas staigus koreliacijos koeficientų
tarp elementų koncentracijų didėjimas, kai gruopuojamų bandinių
kilmė yra panašesnė. 25 elementų koncentracijos buvo išmatuotos
aukščiausia skiriamąja geba indukcinės plazmos masių
spektrometrijos metodu. Apie dešimt ar net daugiau koreliuojančių
elementų porų (kurių koreliacijos koeficientas r > 0,9)
buvo aptikta skirtinguose vynuose iš panašių šaltinių.
Koreliuojančios poros yra grupės ir mėginio ypatumas. Jos rodo
panašumą tarp elemento koncentracijų ir jų šaltinių. Jeigu
koreliuojančių porų skaičius tarp elementų yra ganėtinai didelis,
tai pasinaudoję tuo sąrašu mes galime apskaičiuoti vidutinius
koreliacijos koeficientus pavieniams bandiniams bet kurią
klasifikuojamą grupę atitinkančiam koreliuojančių elementų porų
sąrašui. Toks metodas gali būti naudojamas mėginiams atpažinti.
References / Nuorodos
[1] C. Reimann, G. Kashulina, P. de Caritat, and H. Niskavaara,
Multielement, multi-medium regional geochemistry in the European
Arctic: Element concentration, variation and correlation, Appl.
Geochem. 16(7-8), 759-780 (2001).
https://doi.org/10.1016/S0883-2927(00)00070-6
[2] J. Hu, B.S. Zheng, R.B. Finkelman, B.B. Wang, M.S. Wang, S.H.
Li, and D.S. Wu, Concentration and distribution of sixty-one
elements in coals from DPR Korea, Fuel 85(5-6), 679-688 (2006).
https://doi.org/10.1016/j.fuel.2005.08.037
[3] K. Plessow, K. Acker, H. Heinrichs, and D. Moller, Time study of
trace elements and major ions during two cloud events at the Mt.
Brocken, Atmos. Environ. 35(2), 367-378 (2001).
https://doi.org/10.1016/S1352-2310(00)00134-5
[4] J. Chiarenzelli, L. Aspler, C. Dunn, B. Cousens, D. Ozarko, and
K. Powis, Multielement and rare earth element composition of
lichens, mosses, and vascular plants from the Central Barrenlands,
Nunavut, Canada, Appl. Geochem. 16(2), 245-270 (2001).
https://doi.org/10.1016/S0883-2927(00)00027-5
[5] T. Ciesielski, M.V. Pastukhov, P. Fodor, Z. Bertenyi, J.
Namiesnik, and P. Szefer, Relationships and bioaccumulation of
chemical elements in the Baikal seal (Phoca sibirica), Environ.
Pollut. 139(2), 372-384 (2006).
https://doi.org/10.1016/j.envpol.2004.12.040
[6] P. Heitland and H.D. Koster, Biomonitoring of 30 trace elements
in urine of children and adults by ICP-MS, Clin. Chim. Acta
365(1-2), 310-318 (2006).
https://doi.org/10.1016/j.cca.2005.09.013
[7] J.P. Goulle, L. Mahieu, J. Castermant, N. Neveu, L. Bonneau, G.
Laine, D. Bouige, and C. Lacroix, Metal and metalloid
multielementary ICP-MS validation in whole blood, plasma, urine and
hair - Reference values, Forensic Sci. Int. 153(1), 39-44 (2005).
https://doi.org/10.1016/j.forsciint.2005.04.020
[8] A. Moreda-Pineiro, A. Fisher, and S.J. Hill, The classification
of tea according to region using pattern recognition techniques and
trace metal data, J. Food Composition and Analysis 16(2), 195-211
(2003).
https://doi.org/10.1016/S0889-1575(02)00163-1
[9] M.M.C. Gomez, I. Feldman, N. Jakubowski, and J.T. Andersson,
Classification of German white wines with certified brand of origin
by multielement quantitation and pattern recognition techniques, J.
Agric. Food Chem. 52(10), 2962-2974 (2004).
https://doi.org/10.1021/jf035120f
[10] J.-P. Perez-Trujillo, M. Barbaste, and B. Medina, Chemometric
study of bottled wines with denomination of origin from the Canary
Islands (Spain) based on ultratrace elemental content determined by
ICP-MS, Anal. Lett. 36(3), 679-697 (2003).
https://doi.org/10.1081/AL-120018257
[11] C.M.R. Almeida and M.T.S.D. Vasconcelos, Multielement
composition of wines and their precursors including provenance soil
and their potentialities as fingerprints of wine origin, J. Agric.
Food Chem. 51(16), 4788-4798 (2003).
https://doi.org/10.1021/jf034145b
[12] J. Šperková and M. Suchánek, Multivariate classification of
wines from different Bohemian regions (Czech Republic), Food Chem.
93(4), 659-663 (2005).
https://doi.org/10.1016/j.foodchem.2004.10.044
[13] R. Jimenezespinosa, A.J. Sousa, and M. Chicaolmo,
Identification of geochemical anomalies using principal component
analysis and factorial kriging analysis, J. Geochem. Explor. 46(3),
245-256 (1993).
https://doi.org/10.1016/0375-6742(93)90024-G
[14] R. Rahil-Khazen, B.J. Bolann, and R.J. Ulvik, Correlations of
trace element levels within and between different normal autopsy
tissues analyzed by inductively coupled plasma atomic emission
spectrometry (ICP-AES), Biometals 15(1), 87-98 (2001).
https://doi.org/10.1023/A:1013197120350
[15] M. Dinya, E. Szekely, K. Szentmihalyi, G. Tasnadi, and A.
Blazovics, Major and trace elements in whole blood of phlebotomized
patients with porphyria cutanea tarda, Trace Elem. Med. Biol.
19(2-3), 217-220 (2005).
https://doi.org/10.1016/j.jtemb.2005.07.011