[PDF]    http://dx.doi.org/10.3952/lithjphys.46405

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 505–512 (2006)


MULTIELEMENT ANALYTICAL SPECTROMETRY AS A DATA SOURCE FOR CORRELATIVE CLASSIFICATION OF SAMPLES
P. Serapinas and Ž. Ežerinskis
Joint Isotope Analysis Laboratory, Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: serapinas@pfi.lt

Received 21 July 2006

Fast increase of correlations between the concentrations of elements is observed when diversity of the sample sources decreases. Data of high resolution sector field ICP MS (inductively coupled plasma mass spectrometry) measurements of concentrations of 25 elements in wines were tested in the present study. As much as about ten or more pairs of correlating elements (correlation coefficient r > 0.9) were found for different wines of similar provenance. Correlation pattern is batch and sample specific. It represents the similar sources of elements, similar element quantity governing processes. If the number of the correlating pairs of elements is large, the mean within this list correlation coefficient can be calculated for individual samples, relative to the values of concentrations characteristic of different batches, and it can be used for identification of samples. Data on good potential for applicability of such individual sample-specific correlative characteristics in testing the provenance of samples are presented as examples.
Keywords: multielement mass spectrometry, correlation, pattern recognition
PACS: 02.50.Sk, 07.05.Kf, 07.05.Rm, 82.80.Ms


DAUGIAELEMENTĖS ANALIZINĖS SPEKTROMETRIJOS TAIKYMAS KORELIACINIAM BANDINIŲ KLASIFIKAVIMUI
P. Serapinas, Ž. Ežerinskis
Jungtinė izotopinės analizės laboratorija, VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Pastebimas staigus koreliacijos koeficientų tarp elementų koncentracijų didėjimas, kai gruopuojamų bandinių kilmė yra panašesnė. 25 elementų koncentracijos buvo išmatuotos aukščiausia skiriamąja geba indukcinės plazmos masių spektrometrijos metodu. Apie dešimt ar net daugiau koreliuojančių elementų porų (kurių koreliacijos koeficientas r > 0,9) buvo aptikta skirtinguose vynuose iš panašių šaltinių. Koreliuojančios poros yra grupės ir mėginio ypatumas. Jos rodo panašumą tarp elemento koncentracijų ir jų šaltinių. Jeigu koreliuojančių porų skaičius tarp elementų yra ganėtinai didelis, tai pasinaudoję tuo sąrašu mes galime apskaičiuoti vidutinius koreliacijos koeficientus pavieniams bandiniams bet kurią klasifikuojamą grupę atitinkančiam koreliuojančių elementų porų sąrašui. Toks metodas gali būti naudojamas mėginiams atpažinti.


References / Nuorodos


[1] C. Reimann, G. Kashulina, P. de Caritat, and H. Niskavaara, Multielement, multi-medium regional geochemistry in the European Arctic: Element concentration, variation and correlation, Appl. Geochem. 16(7-8), 759-780 (2001).
https://doi.org/10.1016/S0883-2927(00)00070-6
 
[2] J. Hu, B.S. Zheng, R.B. Finkelman, B.B. Wang, M.S. Wang, S.H. Li, and D.S. Wu, Concentration and distribution of sixty-one elements in coals from DPR Korea, Fuel 85(5-6), 679-688 (2006).
https://doi.org/10.1016/j.fuel.2005.08.037
 
[3] K. Plessow, K. Acker, H. Heinrichs, and D. Moller, Time study of trace elements and major ions during two cloud events at the Mt. Brocken, Atmos. Environ. 35(2), 367-378 (2001).
https://doi.org/10.1016/S1352-2310(00)00134-5
 
[4] J. Chiarenzelli, L. Aspler, C. Dunn, B. Cousens, D. Ozarko, and K. Powis, Multielement and rare earth element composition of lichens, mosses, and vascular plants from the Central Barrenlands, Nunavut, Canada, Appl. Geochem. 16(2), 245-270 (2001).
https://doi.org/10.1016/S0883-2927(00)00027-5
 
[5] T. Ciesielski, M.V. Pastukhov, P. Fodor, Z. Bertenyi, J. Namiesnik, and P. Szefer, Relationships and bioaccumulation of chemical elements in the Baikal seal (Phoca sibirica), Environ. Pollut. 139(2), 372-384 (2006).
https://doi.org/10.1016/j.envpol.2004.12.040
 
[6] P. Heitland and H.D. Koster, Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS, Clin. Chim. Acta 365(1-2), 310-318 (2006).
https://doi.org/10.1016/j.cca.2005.09.013
 
[7] J.P. Goulle, L. Mahieu, J. Castermant, N. Neveu, L. Bonneau, G. Laine, D. Bouige, and C. Lacroix, Metal and metalloid multielementary ICP-MS validation in whole blood, plasma, urine and hair - Reference values, Forensic Sci. Int. 153(1), 39-44 (2005).
https://doi.org/10.1016/j.forsciint.2005.04.020
 
[8] A. Moreda-Pineiro, A. Fisher, and S.J. Hill, The classification of tea according to region using pattern recognition techniques and trace metal data, J. Food Composition and Analysis 16(2), 195-211 (2003).
https://doi.org/10.1016/S0889-1575(02)00163-1
 
[9] M.M.C. Gomez, I. Feldman, N. Jakubowski, and J.T. Andersson, Classification of German white wines with certified brand of origin by multielement quantitation and pattern recognition techniques, J. Agric. Food Chem. 52(10), 2962-2974 (2004).
https://doi.org/10.1021/jf035120f
 
[10] J.-P. Perez-Trujillo, M. Barbaste, and B. Medina, Chemometric study of bottled wines with denomination of origin from the Canary Islands (Spain) based on ultratrace elemental content determined by ICP-MS, Anal. Lett. 36(3), 679-697 (2003).
https://doi.org/10.1081/AL-120018257
 
[11] C.M.R. Almeida and M.T.S.D. Vasconcelos, Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin, J. Agric. Food Chem. 51(16), 4788-4798 (2003).
https://doi.org/10.1021/jf034145b
 
[12] J. Šperková and M. Suchánek, Multivariate classification of wines from different Bohemian regions (Czech Republic), Food Chem. 93(4), 659-663 (2005).
https://doi.org/10.1016/j.foodchem.2004.10.044
 
[13] R. Jimenezespinosa, A.J. Sousa, and M. Chicaolmo, Identification of geochemical anomalies using principal component analysis and factorial kriging analysis, J. Geochem. Explor. 46(3), 245-256 (1993).
https://doi.org/10.1016/0375-6742(93)90024-G
 
[14] R. Rahil-Khazen, B.J. Bolann, and R.J. Ulvik, Correlations of trace element levels within and between different normal autopsy tissues analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES), Biometals 15(1), 87-98 (2001).
https://doi.org/10.1023/A:1013197120350
 
[15] M. Dinya, E. Szekely, K. Szentmihalyi, G. Tasnadi, and A. Blazovics, Major and trace elements in whole blood of phlebotomized patients with porphyria cutanea tarda, Trace Elem. Med. Biol. 19(2-3), 217-220 (2005).
https://doi.org/10.1016/j.jtemb.2005.07.011