[PDF]
http://dx.doi.org/10.3952/lithjphys.46408
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 451–457 (2006)
MODIFICATION OF NANOCRYSTALLINE
MAGNETITE BY MILLING
K. Mažeikaa, J. Reklaitisa, G. Lujanienėa,
D. Baltrūnasa, and A. Baltušnikasb
aInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
E-mail: kestas@ar.fi.lt
bKaunas University of Technology, Donelaičio 73,
LT-44029, Kaunas, Lithuania
Received 6 September 2006
Structural changes in the
nanocrystalline magnetite induced by mechanical milling were
studied by means of Mössbauer spectroscopy and X-ray diffraction.
Magnetite coated with the surfactant layer and that without
surfactant both placed into ethanol were milled using the
planetary ball mill. Mössbauer spectra of samples were recorded at
16–300 K temperature. According to the results of the study,
milled nanocrystalline magnetite can be divided into unaffected
initial ferrimagnetic magnetite, superparamagnetic magnetite, and
“intermediate” magnetite. The stoichiometry of samples was also
evaluated.
Keywords: Mössbauer spectroscopy,
nanoparticles, magnetite, ball milling, structural changes
PACS: 76.80.+y, 75.50.Tt, 81.20.Wk
NANOKRISTALINIO MAGNETITO
MODIFIKAVIMAS MALANT
K. Mažeikaa, J. Reklaitisa, G. Lujanienėa,
D. Baltrūnasa, A. Baltušnikasb
aFizikos institutas, Vilnius, Lietuva
bKauno technologijos universitetas, Kaunas,
Lietuva
Nanokristalinis magnetitas etanolyje buvo
malamas rutuliniu malūnu (Pulverisette 6). Magnetito sandaros
pokyčiai buvo pastebimi Mesbauerio (Mössbauer) spektroskopijos ir
Rentgeno (Röntgen) difrakcijos metodais. Viename iš malamų
feroskysčių magnetito nanodalelės, kurių didumas pagal Rentgeno
difrakcijos duomenis 16–17 nm ir kurios yra pagamintos cheminio
nusodinimo metodu, prieš jas patalpinant etanolyje buvo padengtos
paviršiaus aktyviąja medžiaga (oleino rūgštimi). Panaudojus
Mesbauerio spektroskopiją, buvo įvertinami beveik nepaveikto
ferimagnetinio (dalelių dydžiai 16–17 nm), paramagnetinio
(susmulkintos dalelės iki 10 nm dydžio) ir tarpinio magnetito
santykiniai kiekiai ir jų kitimas malant. Paveiktos susmulkintos
nanokristalinio magnetito dalies kiekis po 6–10 valandų malimo
viršijo nepaveikto magnetito kiekį. Nustatyta, kad feroskysčiui su
aktyviąja paviršiaus medžiaga nepadengtomis dalelėmis malimo
efektyvumas didesnis. Malant magnetitą etanolyje stechiometrijos
kitimo (oksidacijos) nepastebėta.
References / Nuorodos
[1] L. Yuzhi, Z. Chenhui, Z. Sanyuan, and Z. Guien, Mössbauer study
of products of low energy milled Fe30Si70, J. Phys: Condens. Matter
13, 6019-6029 (2001).
[2] G.F. Goya and H.R. Rechenberg, Mechanosynthesis of intermetallic
Fe100-xAlx obtained by reduction of Al/Fe2O3 composite, J. Phys:
Condens. Matter 12, 10579-10590 (2000).
https://doi.org/10.1088/0953-8984/12/50/318
[3] B.F.O. Costa, S.M. Dubiel, and J. Cielak, Investigation of a
Cr42.2Fe57.8 alloy prepared by mechanical alloying, J. Phys:
Condens. Matter 18, 3263-3276 (2006).
https://doi.org/10.1088/0953-8984/18/12/008
[4] A. Cialka, Mechanical alloying - a method for processing and
creating of new materials, Nukleonika 39, 41-46 (1994).
[5] J.A. De Toro, M.A. Lopez de la Torre, M.A. Arranz, J.M. Riveiro,
J.L. Martinez, P. Palade, and G. Filoti, Nonequilibrium magnetic
dynamics in mechanically alloyed materials, Phys. Rev. B 64,
094438-1-9 (2001).
https://doi.org/10.1103/PhysRevB.64.094438
[6] V. Neu and L. Schultz, Two-phase high-performance Nd-Fe-B powder
by mechanical milling, J. Appl. Phys. 90, 1540-1544 (2001).
https://doi.org/10.1063/1.1380223
[7] G.F. Goya, Handling the particle size and distribution of Fe3O4
nanoparticles through ball milling, Solid State Commun. 130, 783-787
(2004).
https://doi.org/10.1016/S0038-1098(04)00300-X
[8] E. Bonetti, L. Del Bianco, S. Signoretti, and P. Tiberto,
Synthesis by ball milling and characterization of nanocrystalline
Fe3O4 and Fe/Fe3O4 composite system, J. Appl. Phys. 89, 1806-1815
(2001).
https://doi.org/10.1063/1.1339855
[9] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K.
Chattopadhyay, H. Guerault, and J.M. Greneche, Magnetic properties
of nanostructured ferrimagnetic zinc ferrite, J. Phys: Condens.
Matter 12, 7795-7805 (2000).
https://doi.org/10.1088/0953-8984/12/35/314
[10] G.F. Goya, H.R. Rechenberg, and J.Z. Jiang, Structural and
magnetic properties of ball milled copper ferrite, J. Appl. Phys.
84, 1101-1108 (1998).
https://doi.org/10.1063/1.368109
[11] X.Y. Zhang, Y.J. Chen, L.N. Fan, and Z.Y. Li, Enhancement of
low-field magnetoresistance in Fe3O4 particles induced by ball
milling, Solid State Commun. 137, 673-677 (2006).
https://doi.org/10.1016/j.ssc.2006.01.009
[12] K. Volenik, M. Seberini, and J. Neid, A Mössbauer and X-ray
diffraction study of nonstoichiometry in magnetite, Czech. J. Phys.
B 25, 1063-1071 (1975).
https://doi.org/10.1007/BF01597585
[13] J.M. Daniels and A. Rosencwaig, Mössbauer spectroscopy of
stoichiometric and non-stoichiometric magnetite, J. Phys. Chem.
Solids 30, 1561-1571 (1969).
https://doi.org/10.1016/0022-3697(69)90217-0
[14] M.F. Thomas and C.E. Johnson, in: Mössbauer Spectroscopy, eds.
D.P.E. Dickson and F.J. Berry (Cambridge University Press,
Cambridge, 1986), p. 193.
[15] S. Morup and E. Tronc, Superparamagnetic relaxation of weakly
interacting particles, Phys. Rev. Lett. 72, 3278-3281 (1994).
https://doi.org/10.1103/PhysRevLett.72.3278
[16] O. Michele, J. Hesse, H. Bremers, E.K. Polychroniadis, K.G.
Efthimiadis, and H. Ahlers, Magnetization experiments on frozen
ferrofluids, J. Phys: Condens. Matter 16, 427-443 (2004).
https://doi.org/10.1088/0953-8984/16/3/019
[17] F. van der Woude and K.W. Maring, in: Proceedings of
International Conference on Mössbauer Spectroscopy, Vol. 2, eds. D.
Barb and D. Tarina (Bucharest, 1977), pp. 133-161.
[18] C.S. Barrett and T. B. Massalski, Structure of Metals
(Metallurgiya, Moscow, 1984), p. 179 [in Russian].
[19] Tables of Physical Units, Handbook, ed. I.K. Kikoin (Atomizdat,
Moscow, 1976), p. 566 [in Russian].
[20] K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege, and A.P.
Philipse, Direct observation of dipolar chains in iron ferrofluids
by cryogenic electron microscopy, Nature Materials 2, 88-91 (2003).
https://doi.org/10.1038/nmat811