[PDF]    http://dx.doi.org/10.3952/lithjphys.46408

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 451–457 (2006)


MODIFICATION OF NANOCRYSTALLINE MAGNETITE BY MILLING
K. Mažeikaa, J. Reklaitisa, G. Lujanienėa, D. Baltrūnasa, and A. Baltušnikasb
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: kestas@ar.fi.lt
bKaunas University of Technology, Donelaičio 73, LT-44029, Kaunas, Lithuania

Received 6 September 2006

Structural changes in the nanocrystalline magnetite induced by mechanical milling were studied by means of Mössbauer spectroscopy and X-ray diffraction. Magnetite coated with the surfactant layer and that without surfactant both placed into ethanol were milled using the planetary ball mill. Mössbauer spectra of samples were recorded at 16–300 K temperature. According to the results of the study, milled nanocrystalline magnetite can be divided into unaffected initial ferrimagnetic magnetite, superparamagnetic magnetite, and “intermediate” magnetite. The stoichiometry of samples was also evaluated.
Keywords: Mössbauer spectroscopy, nanoparticles, magnetite, ball milling, structural changes
PACS: 76.80.+y, 75.50.Tt, 81.20.Wk


NANOKRISTALINIO MAGNETITO MODIFIKAVIMAS MALANT
K. Mažeikaa, J. Reklaitisa, G. Lujanienėa, D. Baltrūnasa, A. Baltušnikasb
aFizikos institutas, Vilnius, Lietuva
bKauno technologijos universitetas, Kaunas, Lietuva

Nanokristalinis magnetitas etanolyje buvo malamas rutuliniu malūnu (Pulverisette 6). Magnetito sandaros pokyčiai buvo pastebimi Mesbauerio (Mössbauer) spektroskopijos ir Rentgeno (Röntgen) difrakcijos metodais. Viename iš malamų feroskysčių magnetito nanodalelės, kurių didumas pagal Rentgeno difrakcijos duomenis 16–17 nm ir kurios yra pagamintos cheminio nusodinimo metodu, prieš jas patalpinant etanolyje buvo padengtos paviršiaus aktyviąja medžiaga (oleino rūgštimi). Panaudojus Mesbauerio spektroskopiją, buvo įvertinami beveik nepaveikto ferimagnetinio (dalelių dydžiai 16–17 nm), paramagnetinio (susmulkintos dalelės iki 10 nm dydžio) ir tarpinio magnetito santykiniai kiekiai ir jų kitimas malant. Paveiktos susmulkintos nanokristalinio magnetito dalies kiekis po 6–10 valandų malimo viršijo nepaveikto magnetito kiekį. Nustatyta, kad feroskysčiui su aktyviąja paviršiaus medžiaga nepadengtomis dalelėmis malimo efektyvumas didesnis. Malant magnetitą etanolyje stechiometrijos kitimo (oksidacijos) nepastebėta. 


References / Nuorodos


[1] L. Yuzhi, Z. Chenhui, Z. Sanyuan, and Z. Guien, Mössbauer study of products of low energy milled Fe30Si70, J. Phys: Condens. Matter 13, 6019-6029 (2001).
 
[2] G.F. Goya and H.R. Rechenberg, Mechanosynthesis of intermetallic Fe100-xAlx obtained by reduction of Al/Fe2O3 composite, J. Phys: Condens. Matter 12, 10579-10590 (2000).
https://doi.org/10.1088/0953-8984/12/50/318
 
[3] B.F.O. Costa, S.M. Dubiel, and J. Cielak, Investigation of a Cr42.2Fe57.8 alloy prepared by mechanical alloying, J. Phys: Condens. Matter 18, 3263-3276 (2006).
https://doi.org/10.1088/0953-8984/18/12/008
 
[4] A. Cialka, Mechanical alloying - a method for processing and creating of new materials, Nukleonika 39, 41-46 (1994).
 
[5] J.A. De Toro, M.A. Lopez de la Torre, M.A. Arranz, J.M. Riveiro, J.L. Martinez, P. Palade, and G. Filoti, Nonequilibrium magnetic dynamics in mechanically alloyed materials, Phys. Rev. B 64, 094438-1-9 (2001).
https://doi.org/10.1103/PhysRevB.64.094438
 
[6] V. Neu and L. Schultz, Two-phase high-performance Nd-Fe-B powder by mechanical milling, J. Appl. Phys. 90, 1540-1544 (2001).
https://doi.org/10.1063/1.1380223
 
[7] G.F. Goya, Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling, Solid State Commun. 130, 783-787 (2004).
https://doi.org/10.1016/S0038-1098(04)00300-X
 
[8] E. Bonetti, L. Del Bianco, S. Signoretti, and P. Tiberto, Synthesis by ball milling and characterization of nanocrystalline Fe3O4 and Fe/Fe3O4 composite system, J. Appl. Phys. 89, 1806-1815 (2001).
https://doi.org/10.1063/1.1339855
 
[9] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, and J.M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite, J. Phys: Condens. Matter 12, 7795-7805 (2000).
https://doi.org/10.1088/0953-8984/12/35/314
 
[10] G.F. Goya, H.R. Rechenberg, and J.Z. Jiang, Structural and magnetic properties of ball milled copper ferrite, J. Appl. Phys. 84, 1101-1108 (1998).
https://doi.org/10.1063/1.368109
 
[11] X.Y. Zhang, Y.J. Chen, L.N. Fan, and Z.Y. Li, Enhancement of low-field magnetoresistance in Fe3O4 particles induced by ball milling, Solid State Commun. 137, 673-677 (2006).
https://doi.org/10.1016/j.ssc.2006.01.009
 
[12] K. Volenik, M. Seberini, and J. Neid, A Mössbauer and X-ray diffraction study of nonstoichiometry in magnetite, Czech. J. Phys. B 25, 1063-1071 (1975).
https://doi.org/10.1007/BF01597585
 
[13] J.M. Daniels and A. Rosencwaig, Mössbauer spectroscopy of stoichiometric and non-stoichiometric magnetite, J. Phys. Chem. Solids 30, 1561-1571 (1969).
https://doi.org/10.1016/0022-3697(69)90217-0
 
[14] M.F. Thomas and C.E. Johnson, in: Mössbauer Spectroscopy, eds. D.P.E. Dickson and F.J. Berry (Cambridge University Press, Cambridge, 1986), p. 193.
 
[15] S. Morup and E. Tronc, Superparamagnetic relaxation of weakly interacting particles, Phys. Rev. Lett. 72, 3278-3281 (1994).
https://doi.org/10.1103/PhysRevLett.72.3278
 
[16] O. Michele, J. Hesse, H. Bremers, E.K. Polychroniadis, K.G. Efthimiadis, and H. Ahlers, Magnetization experiments on frozen ferrofluids, J. Phys: Condens. Matter 16, 427-443 (2004).
https://doi.org/10.1088/0953-8984/16/3/019
 
[17] F. van der Woude and K.W. Maring, in: Proceedings of International Conference on Mössbauer Spectroscopy, Vol. 2, eds. D. Barb and D. Tarina (Bucharest, 1977), pp. 133-161.
 
[18] C.S. Barrett and T. B. Massalski, Structure of Metals (Metallurgiya, Moscow, 1984), p. 179 [in Russian].
 
[19] Tables of Physical Units, Handbook, ed. I.K. Kikoin (Atomizdat, Moscow, 1976), p. 566 [in Russian].
 
[20] K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege, and A.P. Philipse, Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy, Nature Materials 2, 88-91 (2003).
https://doi.org/10.1038/nmat811