[PDF]
http://dx.doi.org/10.3952/lithjphys.46409
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 459–467 (2006)
SPIN CONDUCTANCE OF THE QUANTUM
WIRE
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: dargys@pfi.lt
Received 11 September 2006
The electron spin transport along
a semiconducting quantum wire connected to spin-unpolarized
electron reservoirs and the spin filtering properties of the wire
are investigated. The wire is immersed in a magnetic field that is
perpendicular to the wire axis and substrate plane on which the
wire is grown. The lateral confining potential is assumed to be
parabolic. The spin–orbit interaction is included via Rashba
Hamiltonian that in conjunction with the Zeeman Hamiltonian
determines the spin conductance of the wire. Dependences of the
spin current and conductance on the voltage applied over the ends
of the wire as well as on the magnetic field strength are
analysed.
Keywords: quantum wire, spin transport,
spin conductance
PACS: 73.21.La, 73.63.Nm, 85.35.Be, 85.75.-d, 67.57.Lm
KVANTINĖS VIELOS SUKININIS
LAIDUMAS
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Išnagrinėta elektrono sukinio pernaša išilgai
kvantinės vielos, kurios galai prijungti prie nepoliarizuotų
elektronų rezervuarų, taip pat išnagrinėti kvantinės vielos
sukinio filtravimo ypatumai. Sprendžiant uždavinį buvo padaryta
prielaida, kad vielos plotį lemiantis potencialas turi parabolinį
pavidalą, o magnetinis laukas yra statmenas vielos ašiai ir
padėklui, ant kurio užauginta viela. Į sąveika tarp elektrono
sukinio ir jo orbitinio judėjimo yra atsižvelgta per Rašbos
(Rashba) pasiūlytą hamiltonianą, kuris kartu su Zėmano (Zeeman)
hamiltonianu lemia sukinio srovės stiprį kvantinėje vieloje.
Išnagrinėta sukinio srovės (laidumo) priklausomybė tiek nuo
įtampos tarp kvantinės vielos galų, tiek nuo magnetinio lauko
stiprio. Sukininio laidumo savybės straipsnyje pailiustruotos
piešiniais.
References / Nuorodos
[1] G. Dresselhaus, Spin-orbit coupling effects in zinc-blende
structures, Phys. Rev. 100(2), 580-586 (1955).
https://doi.org/10.1103/PhysRev.100.580
[2] Y.A. Bychkov and E.I. Rashba, Properties of 2D electron gas with
the lifted degeneracy in spectrum, Pis'ma Zh. Eksp. Teor. Fiz. [JETP
Lett.] 39(2), 66-69 (1964).
[3] Y.A. Bychkov and E.I. Rashba, Oscillatory effects and the
magnetic susceptibility of carriers in inversion layers, J. Phys. C
17(33), 6039-6045 (1984).
https://doi.org/10.1088/0022-3719/17/33/015
[4] G. Engels, J. Lange, T. Schäpers, and H. Lüth, Experimental and
theoretical approach to spin splitting in modulation doped
InxGa1-xAs / InP quantum well for B ! 0, Phys. Rev. B 55(4),
R1958-R1961 (1997).
[5] D. Grundler, Large Rashba splitting in InAs quantum wells due to
electron wave function penetration into the barrier layers, Phys.
Rev. Lett. 84(26), 6074-6077 (2000).
https://doi.org/10.1103/PhysRevLett.84.6074
[6] L.V. Landau and E.M. Lifshits, Quantum Mechanics (Nauka, Moscow,
1974), Ch. 3 and 15 [in Russian].
[7] S. Debald and B. Kramer, Rashba effect and magnetic field in
semiconductor quantum wires, Phys. Rev. B 71(11), 115322-1-6 (2005).
https://doi.org/10.1103/PhysRevB.71.115322
[8] J. Knobbe and T. Schäpers, Magnetosubbands of semiconductor
quantum wires with Rashba spin-orbit coupling, Phys. Rev. B 71(3),
035311-1-6 (2005).
https://doi.org/10.1103/PhysRevB.71.035311
[9] S. Zhang, R. Liang, E. Zhang, L. Zhang, and Y. Liu,
Magnetosubbands of semiconductor quantum wires with Rashba and
Dresselhaus spin-orbit coupling, Phys. Rev. B 73(15), 155316-1-7
(2006).
https://doi.org/10.1103/PhysRevB.73.155316
[10] S. Bellucci and P. Onorato, Rashba effect in 2D mesoscopic
systems with transverse magnetic field, arXiv:cond-mat/0311051 ,
1-12 (2003).
[11] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge
University Press, New York, 1995).
https://doi.org/10.1017/CBO9780511805776
[12] J. Shi, P. Zhang, D. Xiao, and Q. Niu, Proper definition of
spin current in spin-orbit coupled systems, Phys. Rev. Lett. 96(27),
076604-1-4 (2006).
https://doi.org/10.1103/PhysRevLett.96.076604
[13] R. Landauer, Spatial variations of currents and fields due to
localized scatterers in metallic conduction, IBM J. Res. Devel.
1(3), 223-231 (1957).
https://doi.org/10.1147/rd.13.0223
[14] M. Büttiker, Symmetry and electrical conduction, IBM J. Res.
Devel. 32(3), 317-334 (1988).
https://doi.org/10.1147/rd.323.0317
[15] Y. Imry and R. Landauer, Conductance viewed as transmission,
Rev. Mod. Phys. 71(2), S306-S312 (1999).
https://doi.org/10.1103/RevModPhys.71.S306
[16] G.A. Korn and T.M. Korn, Mathematical Handbook for Scientists
and Engineers (McGraw-Hill Book Company, New York, 1961), Ch. 4.
[17] A.V. Moroz and C.H.W. Barnes, Effect of the spin-orbit
interaction on the band structure and conductance of
quasi-one-dimensional systems, Phys. Rev. B 60(20), 14272-14285
(1999).
https://doi.org/10.1103/PhysRevB.60.14272
[18] L.P. Rokhinson, V. Larkina, Y.B. Lyanda-Geller, L.N. Pfeiffer,
and K.W. West, Spin separation in cyclotron motion, Phys. Rev. Lett.
93(14), 146601-1-4 (2004).
https://doi.org/10.1103/PhysRevLett.93.146601
[19] L.P. Rokhinson, L.N. Pfeiffer, and K.W. West, Spontaneous spin
polarization in quantum point contacts, Phys. Rev. Lett. 96(15),
156602-1-4 (2006).
https://doi.org/10.1103/PhysRevLett.96.156602
[20] J.G.E. Harris, D.D. Awschalom, K.D. Maranowski, and A.C.
Gossard, Magnetization and dissipation measurements in the quantum
Hall regime using an integrated micromechanical magnetometer, J.
Appl. Phys. 87(9), 5102-5104 (2000).
https://doi.org/10.1063/1.373262