[PDF]    http://dx.doi.org/10.3952/lithjphys.46409

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 459–467 (2006)


SPIN CONDUCTANCE OF THE QUANTUM WIRE
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: dargys@pfi.lt

Received 11 September 2006

The electron spin transport along a semiconducting quantum wire connected to spin-unpolarized electron reservoirs and the spin filtering properties of the wire are investigated. The wire is immersed in a magnetic field that is perpendicular to the wire axis and substrate plane on which the wire is grown. The lateral confining potential is assumed to be parabolic. The spin–orbit interaction is included via Rashba Hamiltonian that in conjunction with the Zeeman Hamiltonian determines the spin conductance of the wire. Dependences of the spin current and conductance on the voltage applied over the ends of the wire as well as on the magnetic field strength are analysed.
Keywords: quantum wire, spin transport, spin conductance
PACS: 73.21.La, 73.63.Nm, 85.35.Be, 85.75.-d, 67.57.Lm


KVANTINĖS VIELOS SUKININIS LAIDUMAS
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Išnagrinėta elektrono sukinio pernaša išilgai kvantinės vielos, kurios galai prijungti prie nepoliarizuotų elektronų rezervuarų, taip pat išnagrinėti kvantinės vielos sukinio filtravimo ypatumai. Sprendžiant uždavinį buvo padaryta prielaida, kad vielos plotį lemiantis potencialas turi parabolinį pavidalą, o magnetinis laukas yra statmenas vielos ašiai ir padėklui, ant kurio užauginta viela. Į sąveika tarp elektrono sukinio ir jo orbitinio judėjimo yra atsižvelgta per Rašbos (Rashba) pasiūlytą hamiltonianą, kuris kartu su Zėmano (Zeeman) hamiltonianu lemia sukinio srovės stiprį kvantinėje vieloje. Išnagrinėta sukinio srovės (laidumo) priklausomybė tiek nuo įtampos tarp kvantinės vielos galų, tiek nuo magnetinio lauko stiprio. Sukininio laidumo savybės straipsnyje pailiustruotos piešiniais. 


References / Nuorodos


[1] G. Dresselhaus, Spin-orbit coupling effects in zinc-blende structures, Phys. Rev. 100(2), 580-586 (1955).
https://doi.org/10.1103/PhysRev.100.580
 
[2] Y.A. Bychkov and E.I. Rashba, Properties of 2D electron gas with the lifted degeneracy in spectrum, Pis'ma Zh. Eksp. Teor. Fiz. [JETP Lett.] 39(2), 66-69 (1964).
 
[3] Y.A. Bychkov and E.I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C 17(33), 6039-6045 (1984).
https://doi.org/10.1088/0022-3719/17/33/015
 
[4] G. Engels, J. Lange, T. Schäpers, and H. Lüth, Experimental and theoretical approach to spin splitting in modulation doped InxGa1-xAs / InP quantum well for B ! 0, Phys. Rev. B 55(4), R1958-R1961 (1997).
 
[5] D. Grundler, Large Rashba splitting in InAs quantum wells due to electron wave function penetration into the barrier layers, Phys. Rev. Lett. 84(26), 6074-6077 (2000).
https://doi.org/10.1103/PhysRevLett.84.6074
 
[6] L.V. Landau and E.M. Lifshits, Quantum Mechanics (Nauka, Moscow, 1974), Ch. 3 and 15 [in Russian].
 
[7] S. Debald and B. Kramer, Rashba effect and magnetic field in semiconductor quantum wires, Phys. Rev. B 71(11), 115322-1-6 (2005).
https://doi.org/10.1103/PhysRevB.71.115322
 
[8] J. Knobbe and T. Schäpers, Magnetosubbands of semiconductor quantum wires with Rashba spin-orbit coupling, Phys. Rev. B 71(3), 035311-1-6 (2005).
https://doi.org/10.1103/PhysRevB.71.035311
 
[9] S. Zhang, R. Liang, E. Zhang, L. Zhang, and Y. Liu, Magnetosubbands of semiconductor quantum wires with Rashba and Dresselhaus spin-orbit coupling, Phys. Rev. B 73(15), 155316-1-7 (2006).
https://doi.org/10.1103/PhysRevB.73.155316
 
[10] S. Bellucci and P. Onorato, Rashba effect in 2D mesoscopic systems with transverse magnetic field, arXiv:cond-mat/0311051 , 1-12 (2003).
 
[11] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, New York, 1995).
https://doi.org/10.1017/CBO9780511805776
 
[12] J. Shi, P. Zhang, D. Xiao, and Q. Niu, Proper definition of spin current in spin-orbit coupled systems, Phys. Rev. Lett. 96(27), 076604-1-4 (2006).
https://doi.org/10.1103/PhysRevLett.96.076604
 
[13] R. Landauer, Spatial variations of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Devel. 1(3), 223-231 (1957).
https://doi.org/10.1147/rd.13.0223
 
[14] M. Büttiker, Symmetry and electrical conduction, IBM J. Res. Devel. 32(3), 317-334 (1988).
https://doi.org/10.1147/rd.323.0317
 
[15] Y. Imry and R. Landauer, Conductance viewed as transmission, Rev. Mod. Phys. 71(2), S306-S312 (1999).
https://doi.org/10.1103/RevModPhys.71.S306
 
[16] G.A. Korn and T.M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill Book Company, New York, 1961), Ch. 4.
 
[17] A.V. Moroz and C.H.W. Barnes, Effect of the spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems, Phys. Rev. B 60(20), 14272-14285 (1999).
https://doi.org/10.1103/PhysRevB.60.14272
 
[18] L.P. Rokhinson, V. Larkina, Y.B. Lyanda-Geller, L.N. Pfeiffer, and K.W. West, Spin separation in cyclotron motion, Phys. Rev. Lett. 93(14), 146601-1-4 (2004).
https://doi.org/10.1103/PhysRevLett.93.146601
 
[19] L.P. Rokhinson, L.N. Pfeiffer, and K.W. West, Spontaneous spin polarization in quantum point contacts, Phys. Rev. Lett. 96(15), 156602-1-4 (2006).
https://doi.org/10.1103/PhysRevLett.96.156602
 
[20] J.G.E. Harris, D.D. Awschalom, K.D. Maranowski, and A.C. Gossard, Magnetization and dissipation measurements in the quantum Hall regime using an integrated micromechanical magnetometer, J. Appl. Phys. 87(9), 5102-5104 (2000).
https://doi.org/10.1063/1.373262