[PDF]    http://dx.doi.org/10.3952/lithjphys.46412

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 46, 395–405 (2006)


CORRELATIONS OF SELF-BOUND IDENTICAL FERMIONS
G.P. Kamuntavičiusa, A. Mašalaitėa, S. Mickevičiusa, D. Germanasb, R.-K. Kalinauskasb, and R. Žemaičiūnienėc
aVytautas Magnus University, Donelaičio 58, LT-44248 Kaunas, Lithuania
E-mail: g.kamuntavicius@gmf.vdu.lt
bInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
cŠiauliai University, Vilniaus 88, LT-76285 Šiauliai, Lithuania

Received 15 September 2006

A method for the calculation of translationally invariant wave functions for systems of identical fermions with arbitrary potential of pair interaction is developed. It is based on the well-known result that the essential dynamic part of Hamiltonian for the system of identical particles is the reduced Hamiltonian operator describing a relative movement of two particles inside the system. The eigenfunctions of this operator take into account all correlations caused by interaction. These eigenfunctions are basic elements for building the components (i. e., the functions with a lower degree of antisymmetry) used to construct the total antisymmetric wave function of the system. The main problem of this approach appears to be the antisymmetrization of the components. The developed universal algorithm for antisymmetrization gives a possibility to carry out this operation in a simple way and to keep numerical approximations under control.
Keywords: self-bound systems, identical fermions, translational invariance, antisymmetrized states, reduced Hamiltonian
PACS: 03.65.Ca, 03.65.Fd, 21.60.-n


SUSIRIŠUSIŲ TAPATINGŲ FERMIONŲ KORELIACIJOS
G.P. Kamuntavičiusa, A. Mašalaitėa, S. Mickevičiusa, D. Germanasb, R.-K. Kalinauskasb, R. Žemaičiūnienėc
aVytauto Didžiojo universitetas, Kaunas, Lietuva
bFizikos institutas, Vilnius, Lietuva
cŠiaulių universitetas, Šiauliai, Lietuva

Susirišusių tapatingų fermionų sistemoms, susidarančioms veikiant dvidalelinėms jėgoms su bet kokio pavidalo potencialu, išplėtotas universalus transliaciškai invariantinių antisimetrinių banginių funkcijų skaičiavimo metodas. Tarpdalelinės sąveikos sąlygotos koreliacijos įskaitomos naudojant sistemos redukuotinio hamiltoniano tikrines funkcijas. Pasiūlytas tokių sistemų banginių funkcijų antisimetrizavimo algoritmas suteikia galimybę antisimetrizacijos operaciją atlikti paprastu skaitmeniškai kontroliuojamu būdu. 


References / Nuorodos


[1] A. Nogga, H. Kamada, and W. Glöckle, Modern nuclear force predictions for the alpha particle, Phys. Rev. Lett. 85, 944-947 (2000).
https://doi.org/10.1103/PhysRevLett.85.944
 
[2] R.B. Wiringa, S.C. Pieper, J. Carlson, and V.R. Pandharipande, Quantum Monte Carlo calculations of A = 8 nuclei, Phys. Rev. C 62, 014001-1-23 (2000).
https://doi.org/10.1103/PhysRevC.62.014001
 
[3] P. Navratil, G.P. Kamuntavičius, and B.R. Barrett, Few-nucleon systems in a translationally invariant harmonic oscillator basis, Phys. Rev. C 61, 044001-1-16 (2000).
https://doi.org/10.1103/PhysRevC.61.044001
 
[4] G.P. Kamuntavičius, Simple functional-differential equations for the bound-state wave-function components, Few-Body Systems 1, 91-109 (1986).
https://doi.org/10.1007/BF01277077
 
[5] R.L. Hall and H.R. Post, Many-particle systems: IV. Short-range interactions, Proc. Phys. Soc. London 90, 381-396 (1967).
https://doi.org/10.1088/0370-1328/90/2/309
 
[6] G.P. Kamuntavičius, Metod reducirovannogo gamiltoniana v teorii svyazannykh sostoyaniy sistem tozhdestvennykh chastits, Fiz. Elem. Chastits At. Yadra 20, 261-292 (1989) [in Russian
 
in Eglish: Reduced-Hamiltonian method in the theory of bound states of systems of identical particles, Sov. J. Part. Nucl. 20, 109-122 (1989)].
 
[7] G. Racah, Theory of complex spectra III, Phys. Rev. 63, 367-382 (1943).
https://doi.org/10.1103/PhysRev.63.367
 
[8] U. Fano and G. Racah, Irreducible Tensorial Sets (Academic Press Inc., New York, 1959).
https://doi.org/10.1063/1.3057072
 
[9] A.J. Coleman, Structure of fermion density matrices, Rev. Mod. Phys. 35, 668-686 (1963).
https://doi.org/10.1103/RevModPhys.35.668
 
[10] G. Strang, Linear Algebra (Academic Press, New York, 1988).
 
[11] G.P. Kamuntavičius, D. Germanas, R.-K. Kalinauskas, and R. Žemaičiūnienė, Lower bounds for energies of the bound states of an atomic nucleus, Lithuanian J. Phys. 43, 81-88 (2003).
 
[12] V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, and J.J. de Swart, Construction of high-quality NN potential models, Phys. Rev. C 49, 2950-2962 (1994).
https://doi.org/10.1103/PhysRevC.49.2950