[PDF]
http://dx.doi.org/10.3952/lithjphys.46412
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 46, 395–405 (2006)
CORRELATIONS OF SELF-BOUND
IDENTICAL FERMIONS
G.P. Kamuntavičiusa, A. Mašalaitėa, S.
Mickevičiusa, D. Germanasb, R.-K.
Kalinauskasb, and R. Žemaičiūnienėc
aVytautas Magnus University, Donelaičio 58, LT-44248
Kaunas, Lithuania
E-mail: g.kamuntavicius@gmf.vdu.lt
bInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
cŠiauliai University, Vilniaus 88, LT-76285
Šiauliai, Lithuania
Received 15 September 2006
A method for the calculation of
translationally invariant wave functions for systems of identical
fermions with arbitrary potential of pair interaction is
developed. It is based on the well-known result that the essential
dynamic part of Hamiltonian for the system of identical particles
is the reduced Hamiltonian operator describing a relative movement
of two particles inside the system. The eigenfunctions of this
operator take into account all correlations caused by interaction.
These eigenfunctions are basic elements for building the
components (i. e., the functions with a lower degree of
antisymmetry) used to construct the total antisymmetric wave
function of the system. The main problem of this approach appears
to be the antisymmetrization of the components. The developed
universal algorithm for antisymmetrization gives a possibility to
carry out this operation in a simple way and to keep numerical
approximations under control.
Keywords: self-bound systems, identical
fermions, translational invariance, antisymmetrized states,
reduced Hamiltonian
PACS: 03.65.Ca, 03.65.Fd, 21.60.-n
SUSIRIŠUSIŲ TAPATINGŲ FERMIONŲ
KORELIACIJOS
G.P. Kamuntavičiusa, A. Mašalaitėa, S.
Mickevičiusa, D. Germanasb, R.-K.
Kalinauskasb, R. Žemaičiūnienėc
aVytauto Didžiojo universitetas, Kaunas, Lietuva
bFizikos institutas, Vilnius, Lietuva
cŠiaulių universitetas, Šiauliai, Lietuva
Susirišusių tapatingų fermionų sistemoms,
susidarančioms veikiant dvidalelinėms jėgoms su bet kokio pavidalo
potencialu, išplėtotas universalus transliaciškai invariantinių
antisimetrinių banginių funkcijų skaičiavimo metodas.
Tarpdalelinės sąveikos sąlygotos koreliacijos įskaitomos naudojant
sistemos redukuotinio hamiltoniano tikrines funkcijas. Pasiūlytas
tokių sistemų banginių funkcijų antisimetrizavimo algoritmas
suteikia galimybę antisimetrizacijos operaciją atlikti paprastu
skaitmeniškai kontroliuojamu būdu.
References / Nuorodos
[1] A. Nogga, H. Kamada, and W. Glöckle, Modern nuclear force
predictions for the alpha particle, Phys. Rev. Lett. 85, 944-947
(2000).
https://doi.org/10.1103/PhysRevLett.85.944
[2] R.B. Wiringa, S.C. Pieper, J. Carlson, and V.R. Pandharipande,
Quantum Monte Carlo calculations of A = 8 nuclei, Phys. Rev. C 62,
014001-1-23 (2000).
https://doi.org/10.1103/PhysRevC.62.014001
[3] P. Navratil, G.P. Kamuntavičius, and B.R. Barrett, Few-nucleon
systems in a translationally invariant harmonic oscillator basis,
Phys. Rev. C 61, 044001-1-16 (2000).
https://doi.org/10.1103/PhysRevC.61.044001
[4] G.P. Kamuntavičius, Simple functional-differential equations for
the bound-state wave-function components, Few-Body Systems 1, 91-109
(1986).
https://doi.org/10.1007/BF01277077
[5] R.L. Hall and H.R. Post, Many-particle systems: IV. Short-range
interactions, Proc. Phys. Soc. London 90, 381-396 (1967).
https://doi.org/10.1088/0370-1328/90/2/309
[6] G.P. Kamuntavičius, Metod reducirovannogo gamiltoniana v teorii
svyazannykh sostoyaniy sistem tozhdestvennykh chastits, Fiz. Elem.
Chastits At. Yadra 20, 261-292 (1989) [in Russian
in Eglish: Reduced-Hamiltonian method in the theory of bound states
of systems of identical particles, Sov. J. Part. Nucl. 20, 109-122
(1989)].
[7] G. Racah, Theory of complex spectra III, Phys. Rev. 63, 367-382
(1943).
https://doi.org/10.1103/PhysRev.63.367
[8] U. Fano and G. Racah, Irreducible Tensorial Sets (Academic Press
Inc., New York, 1959).
https://doi.org/10.1063/1.3057072
[9] A.J. Coleman, Structure of fermion density matrices, Rev. Mod.
Phys. 35, 668-686 (1963).
https://doi.org/10.1103/RevModPhys.35.668
[10] G. Strang, Linear Algebra (Academic Press, New York, 1988).
[11] G.P. Kamuntavičius, D. Germanas, R.-K. Kalinauskas, and R.
Žemaičiūnienė, Lower bounds for energies of the bound states of an
atomic nucleus, Lithuanian J. Phys. 43, 81-88 (2003).
[12] V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, and J.J. de
Swart, Construction of high-quality NN potential models, Phys. Rev.
C 49, 2950-2962 (1994).
https://doi.org/10.1103/PhysRevC.49.2950