[PDF]
http://dx.doi.org/10.3952/lithjphys.47101
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 21–26 (2007)
THE INTERFERENCE OF HIGHER ORDER
LAGUERRE–GAUSSIAN BEAMS
V. Pyragaitė, V. Smilgevičius, A. Stabinis, and V. Maslinskas
Department of Quantum Electronics, Vilnius University,
Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: algirdas.stabinis@ff.vu.lt
Received 19 December 2006
A vorticity of the light eld
created by interference of two parallel Laguerre–Gaussian vortex
beams of topological charge n > 1 is analysed. It is
demonstrated that the locations of the vortices present in the
composite beam depend on the separation between two beams as well
as on the phase shift and topological charge. The qualitative
agreement between theoretical and experimental data was obtained.
Keywords: beam interference, optical
vortex
PACS: 42.25.Hz, 42.60.Jf
AUKŠTESNĖS EILĖS LAGERO IR GAUSO
PLUOŠTŲ INTERFERENCIJA
V. Pyragaitė, V. Smilgevičius, A. Stabinis, V. Maslinskas
Vilniaus universitetas, Vilnius, Lietuva
Nagrinėjama dviejų lygiagrečių Lagero ir Gauso
(Laguerre–Gauss) sūkurinių topologinio krūvio n > 1
pluoštų interferencijos lauko sūkurinė sandara. Parodyta, kad
sudėtiniame pluošte esančių sūkurių padėtys priklauso tiek nuo
atstumo tarp pluoštų, tiek ir nuo fazių skirtumo bei topologinio
krūvio. Gautas kokybinis teorinių ir eksperimentinių duomenų
sutapimas.
References / Nuorodos
[1] J.F. Nye and M.V. Berry, Dislocations in wave trains, Proc. R.
Soc. London, Ser. A 336, 165–190 (1974),
http://dx.doi.org/10.1098/rspa.1974.0012
[2] P. Coullet, L. Gil, and F. Rocca, Optical vortices, Opt. Commun.
73, 403–407 (1989),
http://dx.doi.org/10.1016/0030-4018(89)90180-6
[3] L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, and J.P. Woerdman,
Orbital angular momentum of light and the transformation of
Laguerre–Gaussian laser modes, Phys. Rev. A 45, 8185–8189
(1992,
http://dx.doi.org/10.1103/PhysRevA.45.8185
[4] M.S. Soskin, V.N. Gorshkov, M.V. Vasnetsov, J.T. Malos, and N.R.
Heckenberg, Topological charge and angular momentum of light beams
carrying optical vortices, Phys. Rev. A 56, 4064–4075
(1997),
http://dx.doi.org/10.1103/PhysRevA.56.4064
[5] I.V. Basistiy, V.Yu. Bazhenov, M.S. Soskin, and M.V. Vasnetsov,
Optics of light with screw dislocations, Opt. Commun. 103,
422–428 (1993),
http://dx.doi.org/10.1016/0030-4018(93)90168-5
[6] S. Orlov, K. Regelskis, V. Smilgevicius, and A. Stabinis,
Propagation of Bessel beams carrying optical vortices, Opt. Commun.
209, 155–165 (2002),
http://dx.doi.org/10.1016/S0030-4018(02)01667-X
[7] S. Orlov and A. Stabinis, Propagation of superpositions of
coaxial optical Bessel beams carrying vortices, J. Opt. A: Pure
Appl. Opt. 6, S259–S262 (2004),
http://dx.doi.org/10.1088/1464-4258/6/5/023
[8] G. Molina-Terriza, J. Recolons, and L. Torner, The curious
arithmetic of optical vortices, Opt. Lett. 25, 1135–1137
(2000),
http://dx.doi.org/10.1364/OL.25.001135
[9] I.D. Maleev and G.A. Swartzlander, Composite optical vortices,
J. Opt. Soc. Am. B 20, 1169–1176 (2003),
http://dx.doi.org/10.1364/JOSAB.20.001169
[10] V. Pyragaite and A. Stabinis, Free-space propagation of
overlapping light vortex beams, Opt. Commun. 213, 187–191
(2002),
http://dx.doi.org/10.1016/S0030-4018(02)02083-7
[11] V. Pyragaite and A. Stabinis, Interference of intersecting
singular beams, Opt. Commun. 220, 247–255 (2003),
http://dx.doi.org/10.1016/S0030-4018(03)01422-6
[12] S. Orlov and A. Stabinis, Free-space propagation of light field
created by Bessel–Gauss and Laguerre–Gauss singular beams, Opt.
Commun. 226, 97–105 (2003),
http://dx.doi.org/10.1016/j.optcom.2003.09.005