[PDF]    http://dx.doi.org/10.3952/lithjphys.47101

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 21–26 (2007)


THE INTERFERENCE OF HIGHER ORDER LAGUERRE–GAUSSIAN BEAMS
V. Pyragaitė, V. Smilgevičius, A. Stabinis, and V. Maslinskas
Department of Quantum Electronics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: algirdas.stabinis@ff.vu.lt

Received 19 December 2006

A vorticity of the light eld created by interference of two parallel Laguerre–Gaussian vortex beams of topological charge n > 1 is analysed. It is demonstrated that the locations of the vortices present in the composite beam depend on the separation between two beams as well as on the phase shift and topological charge. The qualitative agreement between theoretical and experimental data was obtained.
Keywords: beam interference, optical vortex
PACS: 42.25.Hz, 42.60.Jf


AUKŠTESNĖS EILĖS LAGERO IR GAUSO PLUOŠTŲ INTERFERENCIJA
V. Pyragaitė, V. Smilgevičius, A. Stabinis, V. Maslinskas
Vilniaus universitetas, Vilnius, Lietuva

Nagrinėjama dviejų lygiagrečių Lagero ir Gauso (Laguerre–Gauss) sūkurinių topologinio krūvio n > 1 pluoštų interferencijos lauko sūkurinė sandara. Parodyta, kad sudėtiniame pluošte esančių sūkurių padėtys priklauso tiek nuo atstumo tarp pluoštų, tiek ir nuo fazių skirtumo bei topologinio krūvio. Gautas kokybinis teorinių ir eksperimentinių duomenų sutapimas.


References / Nuorodos


[1] J.F. Nye and M.V. Berry, Dislocations in wave trains, Proc. R. Soc. London, Ser. A 336, 165–190 (1974),
http://dx.doi.org/10.1098/rspa.1974.0012
[2] P. Coullet, L. Gil, and F. Rocca, Optical vortices, Opt. Commun. 73, 403–407 (1989),
http://dx.doi.org/10.1016/0030-4018(89)90180-6
[3] L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, and J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes, Phys. Rev. A 45, 8185–8189 (1992,
http://dx.doi.org/10.1103/PhysRevA.45.8185
[4] M.S. Soskin, V.N. Gorshkov, M.V. Vasnetsov, J.T. Malos, and N.R. Heckenberg, Topological charge and angular momentum of light beams carrying optical vortices, Phys. Rev. A 56, 4064–4075 (1997),
http://dx.doi.org/10.1103/PhysRevA.56.4064
[5] I.V. Basistiy, V.Yu. Bazhenov, M.S. Soskin, and M.V. Vasnetsov, Optics of light with screw dislocations, Opt. Commun. 103, 422–428 (1993),
http://dx.doi.org/10.1016/0030-4018(93)90168-5
[6] S. Orlov, K. Regelskis, V. Smilgevicius, and A. Stabinis, Propagation of Bessel beams carrying optical vortices, Opt. Commun. 209, 155–165 (2002),
http://dx.doi.org/10.1016/S0030-4018(02)01667-X
[7] S. Orlov and A. Stabinis, Propagation of superpositions of coaxial optical Bessel beams carrying vortices, J. Opt. A: Pure Appl. Opt. 6, S259–S262 (2004),
http://dx.doi.org/10.1088/1464-4258/6/5/023
[8] G. Molina-Terriza, J. Recolons, and L. Torner, The curious arithmetic of optical vortices, Opt. Lett. 25, 1135–1137 (2000),
http://dx.doi.org/10.1364/OL.25.001135
[9] I.D. Maleev and G.A. Swartzlander, Composite optical vortices, J. Opt. Soc. Am. B 20, 1169–1176 (2003),
http://dx.doi.org/10.1364/JOSAB.20.001169
[10] V. Pyragaite and A. Stabinis, Free-space propagation of overlapping light vortex beams, Opt. Commun. 213, 187–191 (2002),
http://dx.doi.org/10.1016/S0030-4018(02)02083-7
[11] V. Pyragaite and A. Stabinis, Interference of intersecting singular beams, Opt. Commun. 220, 247–255 (2003),
http://dx.doi.org/10.1016/S0030-4018(03)01422-6
[12] S. Orlov and A. Stabinis, Free-space propagation of light field created by Bessel–Gauss and Laguerre–Gauss singular beams, Opt. Commun. 226, 97–105 (2003),
http://dx.doi.org/10.1016/j.optcom.2003.09.005