[PDF]    http://dx.doi.org/10.3952/lithjphys.47102

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 59–62 (2007)


SYNTHESIS AND X-RAY STUDY OF AMMONIUM POLYVANADOMOLYBDATE XEROGELS
V. Bondarenkaa, A. Pašiškevičiusa, V.L. Volkovb, and G.S. Zakharovab
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: bond@pfi.lt
bInstitute of Solid State Chemistry, Pervomayskaya 91, 620219 Yekaterinburg, Russian Federation
E-mail: volkov@ihim.uran.ru

Received 1 December 2006

(NH4)2–xHxV9Mo3O31±δ·nH2O (x = 0, 1) gels were produced from V2O5, NH4VO3, 40% H2O2, and Mo powder by using sol–gel technology. Synthesized gels were investigated by X-ray photoelectron spectroscopy methods. The shape and position of the complex core photoelectron lines V 2p, O 1s, C 1s, Mo 3p, Mo 3d, and N 1s were analysed for the gels with different x values. The valences of the V and Mo ions, which have an important role in the electrical conductivity of the compounds, was studied. It has been found that the molybdenum is in the stable Mo6+ state. The vanadium ions are in V5+ and V4+ states. The reduction ratio of vanadium ions is about 0.043 independent of the x value. The position of the N 1s peak indicates that the nitrogen is connected with hydrogen in NH4 ions.
Keywords: vanadium oxides, hydrates, ammonium, XPS
PACS: 72.80.Ga, 81.20.Fw, 82.70.Gg, 82.80.Pv


AMONIO POLIVANADATŲ–MOLIBDATŲ SINTEZĖ IR RENTGENO FOTOELEKTRONINIŲ SPEKTRŲ TYRIMAS
V. Bondarenkaa, A. Pašiškevičiusa, V.L. Volkovb, G.S. Zakharovab
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bKietojo kūno chemijos institutas, Jekaterinburgas, Rusija

Iš V2O5, NH4VO3, 40% H2O2 ir Mo miltelių, naudojant zolių ir gelių technologiją, buvo pagaminti (NH4)2–xHxV9Mo3O31±δ·nH2O (x = 0, 1) geliai. Pateikti minėtų gelių cheminės sudėties bei atskirų elementų būsenų tyrimo Rentgeno fotoelektroninės spektroskopijos (RFS) metodu rezultatai. Analizuoti V 2p, O 1s, C 1s, Mo 3p, Mo 3d ir N 1s smailių parametrai bei vanadžio ir molibdeno jonų valentingumas. Nustatyta, kad molibdeno jonai yra stabilioje Mo6+ būsenoje, o vanadžio – V4+ ir V5+ būsenose. Vanadžio jonų redukcijos santykis nepriklauso nuo gelių sudėties ir yra apie 0,043. N 1s smailės ryšio energijos vertė rodo, kad azotas geliuose surištas su vandeniliu NH4 jonuose.


References / Nuorodos


[1] V.L. Volkov, Intercalation Phases Based on Vanadium Oxides (Uralskii Nauchnyi Tsentr Akademii Nauk SSSR, Sverdlovsk, 1978) [in Russian]
[2] J. Livage, Vanadium pentoxide gels, Chem. Mater. 3(4), 578–593 (1991),
http://dx.doi.org/10.1021/cm00016a006
[3] D.R. Ulrich, Prospects of sol–gel processes, J. Non-Cryst. Solids 100(1–3), 174–193 (1988),
http://dx.doi.org/10.1016/0022-3093(88)90015-4
[4] P. Aldebert, H.W. Haesslin, N. Baffier, and J. Livage, Vanadium pentoxide gels: III. X-ray and neutron diffraction study of highly concentrated systems; one-dimensional swelling, J. Colloid. Interface Sci. 98(2), 478–483 (1984),
http://dx.doi.org/10.1016/0021-9797(84)90173-5
[5] P. Aldebert, N. Baffier, J.-J. Legendre, and J. Livage, V2O5 gels: A versatile host structure for intercalation, Chim. Miner. 19(4–5), 485–495 (1982)
[6] R.M. Guseinov and V.D. Prisyazhnyi, Protonic solid electrolytes, Ukr. Khim. Zh. (Russ. Ed.) 58(10), 823–833 (1992)
[7] A.B. Yaroslavtsev, Proton conductivity of inorganic hydrates, Usp. Khim. (Russ. Chem. Rev.) 63(5), 449–455 (1994) [in Russian],
http://dx.doi.org/10.1070/RC1994v063n05ABEH000095
[8] V.L. Volkov, G.S. Zakharova, L.V. Kristallov, M.V. Kuznetsov, G. Dai, and M. Tong, Synthesis, structure, and properties of ammonium polyvanadomolybdate xerogels, Inorg. Mater. 37(4), 408–412 (2001),
http://dx.doi.org/10.1023/A:1017544231359
[9] V.L. Volkov, G.S. Zakharova, M.V. Kuznetsov, A. Jin, Q. Zhu, and W. Chen, Nanocomposites of V1.67M0.33O5 ·nH2O (M = Ti or Mo) xerogels intercalated with hydroquinone and poly(vinyl alcohol), Russ. J. Inorg. Chem. 51(9), 1339–1344 (2006),
http://dx.doi.org/10.1134/S0036023606090014
[10] V.L. Volkov, G.S. Zakharova, and V. Bondarenka, Xerogels of Simple and Complicated Polyvanadates (Ural Branch of Russian Acad. Sci., Yekaterinburg, 2001) [in Russian]
[11] G.S. Zakharova, V.L. Volkov, V.V. Ivanovskaia, and A.L. Ivanovskii, Nanotubes and Similar Nanostructures of Metal Oxides (Ural Branch of Russian Acad. Sci., Yekaterinburg, 2005) [in Russian]
[12] C.D. Wagner, J.F. Moulder, L.E. Davis, and W.M. Riggs, Handbook of X-ray Photoelectron Spectroscopy (Perkin–Elmer Corporation, Physical Electronics Division, 1995)
[13] B.F. Dzhurinskii, D. Gati, N.P. Sergushin, V.I. Nefedov, and Ya.V. Salyn, Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides, Zh. Neorg. Khim. (Russ. J. Inorg. Chem.) 20, 2307–2314 (1975)
[14] G. Hopfengärtner, D. Borgmann, I. Rademcher, G. Wedler, E. Hums, and G.W. Spitznagel, XPS studies of oxidic model catalysts: Internal standards and oxidation numbers, J. Electron Spectrosc. Related Phenomena 63(2), 91–116 (1993),
http://dx.doi.org/10.1016/0368-2048(93)80042-K
[15] T.L. Barr, An ESCA study of termination of the passivation of elemental metals, J. Phys. Chem. 82(16), 1801–1810 (1978),
http://dx.doi.org/10.1021/j100505a006
[16] C.-O.A. Olsson and S.E. Hornstrom, An AES and XPS study of the high alloy austenic stainless steel 254 SMO tested in a ferric chloride solution, Corrosion Sci. 36(1), 141–151 (1994),
http://dx.doi.org/10.1016/0010-938X(94)90115-5
[17] G.D. Khattak, M.A. Salim, A.S. Al-Harthi, D.J. Thompson, and L.E. Wenger, Structure of molybdenum-phosphate glasses by X-ray photoelectron spectroscopy (XPS), J. Non-Cryst. Solids 212(2–3), 180–191 (1997),
http://dx.doi.org/10.1016/S0022-3093(97)00023-9
[18] C.R. Clayton and K.G. Martin, Evidence of anodic segregation of nitrogen in high nitrogen stainless steels and its influence on passivity, in: Proceedings of International Conference on High Nitrogen Steel HNS 88, Lille, May 1988, eds. A. Hendry and J. Foche (London, 1989) pp. 256–260
[19] V. Bondarenko, S. Kaciulis, A. Plesanovas, V. Volkov, and G. Zacharova, Photoelectron spectroscopy of the poly-vanadium transition metal acids, Appl. Surf. Sci. 78(1), 107-112 (1994),
http://dx.doi.org/10.1016/0169-4332(94)90038-8