[PDF]
http://dx.doi.org/10.3952/lithjphys.47102
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 59–62 (2007)
SYNTHESIS AND X-RAY STUDY OF
AMMONIUM POLYVANADOMOLYBDATE XEROGELS
V. Bondarenkaa, A. Pašiškevičiusa, V.L.
Volkovb, and G.S. Zakharovab
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: bond@pfi.lt
bInstitute of Solid State Chemistry, Pervomayskaya
91, 620219 Yekaterinburg, Russian Federation
E-mail: volkov@ihim.uran.ru
Received 1 December 2006
(NH4)2–xHxV9Mo3O31±δ·nH2O
(x = 0, 1) gels were produced from V2O5,
NH4VO3, 40% H2O2, and
Mo powder by using sol–gel technology. Synthesized gels were
investigated by X-ray photoelectron spectroscopy methods. The
shape and position of the complex core photoelectron lines V 2p,
O 1s, C 1s, Mo 3p, Mo 3d, and N 1s
were analysed for the gels with different x values. The
valences of the V and Mo ions, which have an important role in the
electrical conductivity of the compounds, was studied. It has been
found that the molybdenum is in the stable Mo6+ state.
The vanadium ions are in V5+ and V4+ states.
The reduction ratio of vanadium ions is about 0.043 independent of
the x value. The position of the N 1s peak
indicates that the nitrogen is connected with hydrogen in NH4
ions.
Keywords: vanadium oxides, hydrates,
ammonium, XPS
PACS: 72.80.Ga, 81.20.Fw, 82.70.Gg, 82.80.Pv
AMONIO POLIVANADATŲ–MOLIBDATŲ
SINTEZĖ IR RENTGENO FOTOELEKTRONINIŲ SPEKTRŲ TYRIMAS
V. Bondarenkaa, A. Pašiškevičiusa, V.L.
Volkovb, G.S. Zakharovab
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bKietojo kūno chemijos institutas,
Jekaterinburgas, Rusija
Iš V2O5, NH4VO3,
40% H2O2 ir Mo miltelių, naudojant zolių ir
gelių technologiją, buvo pagaminti (NH4)2–xHxV9Mo3O31±δ·nH2O
(x = 0, 1) geliai. Pateikti minėtų gelių cheminės sudėties
bei atskirų elementų būsenų tyrimo Rentgeno fotoelektroninės
spektroskopijos (RFS) metodu rezultatai. Analizuoti V 2p, O
1s, C 1s, Mo 3p, Mo 3d ir N 1s
smailių parametrai bei vanadžio ir molibdeno jonų valentingumas.
Nustatyta, kad molibdeno jonai yra stabilioje Mo6+ būsenoje, o
vanadžio – V4+ ir V5+ būsenose. Vanadžio
jonų redukcijos santykis nepriklauso nuo gelių sudėties ir yra
apie 0,043. N 1s smailės ryšio energijos vertė rodo, kad azotas
geliuose surištas su vandeniliu NH4 jonuose.
References / Nuorodos
[1] V.L. Volkov, Intercalation Phases Based on Vanadium Oxides
(Uralskii Nauchnyi Tsentr Akademii Nauk SSSR, Sverdlovsk, 1978) [in
Russian]
[2] J. Livage, Vanadium pentoxide gels, Chem. Mater. 3(4),
578–593 (1991),
http://dx.doi.org/10.1021/cm00016a006
[3] D.R. Ulrich, Prospects of sol–gel processes, J. Non-Cryst.
Solids 100(1–3), 174–193 (1988),
http://dx.doi.org/10.1016/0022-3093(88)90015-4
[4] P. Aldebert, H.W. Haesslin, N. Baffier, and J. Livage, Vanadium
pentoxide gels: III. X-ray and neutron diffraction study of highly
concentrated systems; one-dimensional swelling, J. Colloid.
Interface Sci. 98(2), 478–483 (1984),
http://dx.doi.org/10.1016/0021-9797(84)90173-5
[5] P. Aldebert, N. Baffier, J.-J. Legendre, and J. Livage, V2O5
gels: A versatile host structure for intercalation, Chim. Miner. 19(4–5),
485–495 (1982)
[6] R.M. Guseinov and V.D. Prisyazhnyi, Protonic solid electrolytes,
Ukr. Khim. Zh. (Russ. Ed.) 58(10), 823–833 (1992)
[7] A.B. Yaroslavtsev, Proton conductivity of inorganic hydrates,
Usp. Khim. (Russ. Chem. Rev.) 63(5), 449–455 (1994) [in
Russian],
http://dx.doi.org/10.1070/RC1994v063n05ABEH000095
[8] V.L. Volkov, G.S. Zakharova, L.V. Kristallov, M.V. Kuznetsov, G.
Dai, and M. Tong, Synthesis, structure, and properties of ammonium
polyvanadomolybdate xerogels, Inorg. Mater. 37(4), 408–412
(2001),
http://dx.doi.org/10.1023/A:1017544231359
[9] V.L. Volkov, G.S. Zakharova, M.V. Kuznetsov, A. Jin, Q. Zhu, and
W. Chen, Nanocomposites of V1.67M0.33O5
·nH2O (M = Ti or Mo) xerogels intercalated with
hydroquinone and poly(vinyl alcohol), Russ. J. Inorg. Chem. 51(9),
1339–1344 (2006),
http://dx.doi.org/10.1134/S0036023606090014
[10] V.L. Volkov, G.S. Zakharova, and V. Bondarenka, Xerogels of
Simple and Complicated Polyvanadates (Ural Branch of Russian
Acad. Sci., Yekaterinburg, 2001) [in Russian]
[11] G.S. Zakharova, V.L. Volkov, V.V. Ivanovskaia, and A.L.
Ivanovskii, Nanotubes and Similar Nanostructures of Metal Oxides
(Ural Branch of Russian Acad. Sci., Yekaterinburg, 2005) [in
Russian]
[12] C.D. Wagner, J.F. Moulder, L.E. Davis, and W.M. Riggs, Handbook
of X-ray Photoelectron Spectroscopy (Perkin–Elmer Corporation,
Physical Electronics Division, 1995)
[13] B.F. Dzhurinskii, D. Gati, N.P. Sergushin, V.I. Nefedov, and
Ya.V. Salyn, Simple and coordination compounds. An X-ray
photoelectron spectroscopic study of certain oxides, Zh. Neorg.
Khim. (Russ. J. Inorg. Chem.) 20, 2307–2314 (1975)
[14] G. Hopfengärtner, D. Borgmann, I. Rademcher, G. Wedler, E.
Hums, and G.W. Spitznagel, XPS studies of oxidic model catalysts:
Internal standards and oxidation numbers, J. Electron Spectrosc.
Related Phenomena 63(2), 91–116 (1993),
http://dx.doi.org/10.1016/0368-2048(93)80042-K
[15] T.L. Barr, An ESCA study of termination of the passivation of
elemental metals, J. Phys. Chem. 82(16), 1801–1810 (1978),
http://dx.doi.org/10.1021/j100505a006
[16] C.-O.A. Olsson and S.E. Hornstrom, An AES and XPS study of the
high alloy austenic stainless steel 254 SMO tested in a ferric
chloride solution, Corrosion Sci. 36(1), 141–151 (1994),
http://dx.doi.org/10.1016/0010-938X(94)90115-5
[17] G.D. Khattak, M.A. Salim, A.S. Al-Harthi, D.J. Thompson, and
L.E. Wenger, Structure of molybdenum-phosphate glasses by X-ray
photoelectron spectroscopy (XPS), J. Non-Cryst. Solids 212(2–3),
180–191 (1997),
http://dx.doi.org/10.1016/S0022-3093(97)00023-9
[18] C.R. Clayton and K.G. Martin, Evidence of anodic segregation of
nitrogen in high nitrogen stainless steels and its influence on
passivity, in: Proceedings of International Conference on High
Nitrogen Steel HNS 88, Lille, May 1988, eds. A. Hendry and J.
Foche (London, 1989) pp. 256–260
[19] V. Bondarenko, S. Kaciulis, A. Plesanovas, V. Volkov, and G.
Zacharova, Photoelectron spectroscopy of the poly-vanadium
transition metal acids, Appl. Surf. Sci. 78(1), 107-112
(1994),
http://dx.doi.org/10.1016/0169-4332(94)90038-8