[PDF]
http://dx.doi.org/10.3952/lithjphys.47107
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 51–57 (2007)
REVERSE-BIAS LEAKAGE IN SCHOTTKY
DIODES
P. Pipinys, A. Rimeika, and V. Lapeika
Department of Physics, Vilnius Pedagogical University, Studentų
39, LT-08106 Vilnius, Lithuania
E-mail: fizdidkat@vpu.lt
Received 29 January 2007
Reverse-bias current–voltage (IR–V
) characteristics of Al-n/GaAs Schottky diodes have been
studied in a temperature range from 92 to 333 K. The results are
explained on the basis of phonon-assisted tunnelling model. It is
shown that the temperature dependence of the reverse current IR
could be caused by the temperature dependence of the electron
tunnelling rate from traps in the metal–semiconductor interface to
the conduction band of the semiconductor.
Temperature-dependent IR–V data obtained
by Zhang et al [J. Appl. Phys. 2006; 99: 023703] and Osvald et al
[Microelectron. Eng. 2005; 81: 181] for Schottky diodes fabricated
on n-GaN are reinterpreted in terms of a phonon-assisted
tunnelling model. The temperature and bias voltages dependences of
an apparent barrier height (activation energy) observed by other
researchers are also explained in the framework of this model.
Keywords: GaN, 4H-SiC, pulsed VACH
measurement, high electric field effects
PACS: 65.40.-b, 71.55.Eq, 72.20.Ht, 73.50.Fq
ATGALINĖ SROVĖ ŠOTKIO DIODUOSE
P. Pipinys, A. Rimeika, V. Lapeika
Vilniaus pedagoginis universitetas, Vilnius, Lietuva
Tirta krūvio pernaša Al-n/GaAs Šotkio
(Schottky) dioduose. Išmatuotos srovės tankio priklausomybės
92–333 K temperatūros srityje, esant skirtingoms pridėtos
atgalinės įtampos vertėms. Kai tos vertės mažos, eksperimentiškai
parodyta, kad tiriamuose Šotkio dioduose atgalinės srovės tankio
temperatūrinės priklausomybės yra termoaktyvacinio pobūdžio.
Tokios eigos atgalinės srovės voltamperinių charakteristikų
temperatūrinės priklausomybės aiškinamos fononais paskatintų
elektronų tunelinių šuolių iš sandūroje esančių lygmenų į
puslaidininkio laidumo juostą modeliu. Eksperimentiniai rezultatai
palyginti su teorinėmis elektronų tunelinių šuolių spartos
priklausomybėmis nuo elektrinio lauko stiprio ir temperatūros. Iš
palyginimų gautas lokalizuotų elektronų tankis sandūros lygmenyse
(≈1011 cm–2) ir įvertinti elektrinių laukų
sandūroje stipriai.
Tuo pačiu modeliu aiškinamos kitų autorių išmatuotos atgalinių
srovių voltamperinių charakteristikų temperatūrinės priklausomybės
Ag/n-GaAs bei n-GaN Šotkio dioduose [13, 19, 26].
Taip pat aiškinamas [7, 12, 19, 20, 22] darbuose nustatytas
barjero aukščio (aktyvacijos energijos) kitimas nuo pridėtos
atgalinės įtampos ir temperatūros skirtingų medžiagų Šotkio
dioduose.
References / Nuorodos
[1] S.M. Sze, Physics of Semiconductor Devices, 2nd ed.
(Wiley–Interscience, New York, 1981)
[2] R. Hackam and P. Harrop, Electrical properties of
nickel-low-doped n-type gallium arsenide Schottky-barrier diodes,
IEEE Trans. Electron Devices ED-19, 1231–1238 (1972),
http://dx.doi.org/10.1109/T-ED.1972.17586
[3] J.H. Werner and H.H. Guttler, Barrier inhomogeneities at
Schottky contacts, J. Appl. Phys. 69, 1522–1523 (1991),
http://dx.doi.org/10.1063/1.347243
[4] M.O. Aboelfotoh, Temperature dependence of the Schottky-barrier
height of tungsten on n-type and p-type silicon,
Appl. Phys. 69, 3351–3353 (1991). Solid-State Electron. 34,
51–55 (1991),
http://dx.doi.org/10.1016/0038-1101(91)90200-I
[5] P.G. McCafferty, A. Sellai, P. Dawson, and H. Elabd, Barrier
characteristics of PtSi/p-Si Schottky diodes as determined
from I–V–T measurements, Solid-State Electron.
39, 583–592 (1996),
http://dx.doi.org/10.1016/0038-1101(95)00162-X
[6] A. Sing, P. Cova, and R.A. Masut, Reverse I–V and
C–V characteristics of Schottky barrier type diodes on
Zn doped InP epilayers by metalorganic vapor phase epitaxy, J. Appl.
Phys. 76, 2336–2342 (1994),
http://dx.doi.org/10.1063/1.357611
[7] M. Barus and D. Donoval, Analysis of I–V measurements on CrSi2–Si
Schottky structures in a wide temperature range, Solid-State
Electron. 36, 969–974 (1993),
http://dx.doi.org/10.1016/0038-1101(93)90112-4
[8] T.P. Chen, T.C. Lee, C.C. Ling, C.D. Beling, and S. Fung,
Current transport and its effect on the determination of the
Shottky-barrier height in a typical system: Gold on silicon,
Solid-State Electron. 36, 949–954 (1993),
http://dx.doi.org/10.1016/0038-1101(93)90109-4
[9] K. Maeda, I. Umezu, H. Ikoma, and T. Yoshimura, Nonideal J–V
characteristics and interface states of an α-Si:H Schottky
barrier, J. Appl. Phys. 68, 2858–2867 (1990),
http://dx.doi.org/10.1063/1.346418
[10] H. Ikoma and K. Maeda, Analysis of Si Schottky barrier
characteristics based on a new interfacial layer model, Japan J.
Appl. Phys. 30, 19–26 (1991).
http://dx.doi.org/10.1143/JJAP.30.19
[11] S. Chand and J. Kumar, Current–voltage characteristics and
barrier parameters of Pd2Si/p-Si(111) Schottky
diodes in a wide temperature range, Semicond. Sci. Technol. 10,
1680–1688 (1995).
http://dx.doi.org/10.1088/0268-1242/10/12/019
[12] G.P. Ru, R.L. Van Meirhaeghe, S. Forment, Y.L. Jiang, X.P. Qu,
S. Zhu, and B.Z. Li, Voltage dependence of effective barrier height
reduction in inhomogeneous Schottky diodes, Solid-State Electron.
49, 606–611 (2005).
http://dx.doi.org/10.1016/j.sse.2004.12.005
[13] M.A. Ebeoğlu, F. Temurt, and Z.Z. Öztürk, Ag/n-GaAs
Schottky MIS diodes with surface insulating layers prepared using
(NH4)2S solutions without water, Solid-State Electron. 42,
23–27 (1998)
[14] S. Karatas and S. Altindal, Temperature dependence of barrier
heights of Au/n-type GaAs Schottky diodes, Solid-State
Electron. 49, 1052–1054 (2005),
http://dx.doi.org/10.1016/j.sse.2005.02.005
[15] M. Nathan, Z. Shoshani, G. Ashkinazi, B. Meyler, and O.
Zolotarevski, On the temperature dependence of the barrier height
and ideality factor in high voltage Ni-nGaAs Schottky diodes,
Solid-State Electron. 39, 1457–1462 (1996),
http://dx.doi.org/10.1016/0038-1101(96)00060-3
[16] S. Chand and J. Kumar, Evidence for the double distribution of
barrier heights in Pd2Si/n-Si Schottky diodes from
I–V–T measurements, Semicond. Sci. Technol. 11,
1203–1208 (1996),
http://dx.doi.org/10.1088/0268-1242/11/8/015
[17] S. Zhu, R.L. Van Meirhaeghe, C. Detavernier, F. Cardon, G.P.
Ru, X.P. Qu, and B.Z. Li, Barrier height inhomogeneities of
epitaxial CoSi2 Schottky contacts on n-Si(111),
Solid-State Electron. 44, 625–631 (2000),
http://dx.doi.org/10.1016/S0038-1101(99)00268-3
[18] H. Cetin and E. Ayyildiz, Temperature dependence of electrical
parameters of the Au/n-InP Schottky barrier diodes, Semicond.
Sci. Technol. 20, 625–631 (2005),
http://dx.doi.org/10.1088/0268-1242/20/6/025
[19] J. Osvald, J. Kuzmik, G. Konstantinidis, P. Lobotka, and A.
Georgakilas, Temperature dependence of GaN Schottky diodes I–V
characteristics, Microelectron. Eng. 81, 181–187 (2005),
http://dx.doi.org/10.1016/j.mee.2005.03.004
[20] A. Gümü, A. Türüt, and N. Yalcin, Temperature dependent barrier
characteristics of CrNiCo alloy Schottky contacts on n-type
molecular-beam epitaxy GaAs, J. Appl. Phys. 91, 245–250
(2002),
http://dx.doi.org/10.1063/1.1424054
[21] Y.L. Jiang, G.P. Ru, F. Lu, X.P. Qu, B.Z. Li, and S. Yang,
Ni/Si solid phase reaction studied by temperature-dependent
current–voltage technique, J. Appl. Phys. 93, 866–870
(2003),
http://dx.doi.org/10.1063/1.1527714
[22] M. Biber, Low-temperature current–voltage characteristics of
MIS Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky
diodes, Physica B
25, 138–148 (2003),
http://dx.doi.org/10.1016/S0921-4526(02)01515-6
[23] C.Y. Chang and S.M. Sze, Current transport across
metal–semiconductor barriers, Solid-State Electron. 13,
727–740 (1970),
http://dx.doi.org/10.1016/0038-1101(70)90060-2
[24] Ö.S. Aniltürk and R. Turan, Electrical transport at a non-ideal
CrSi2–Si junction, Solid-State Electron. 44,
41–48 (2000),
http://dx.doi.org/10.1016/S0038-1101(99)00204-X
[25] E.J. Miller, E.T. Yu, Waltereit, and J.S. Speck, Analysis of
reverse-bias leakage current mechanisms in GaN grown by
molecular-beam epitaxy, Appl. Phys. Lett. 84, 535–541
(2004),
http://dx.doi.org/10.1063/1.1644029
[26] H. Zhang, E.J. Miller, and E.T. Yu, Analysis of leakage current
mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN
grown by molecular-beam epitaxy, J. Appl. Phys. 99,
023703–023709 (2006),
http://dx.doi.org/10.1063/1.2159547
[27] W.P. Leroy, K. Opsomer, S. Forment, and R.L. Van Meirhaeghe,
The barrier height inhomogeneity in identically prepared Au/n-GaAs
Schottky barrier diodes, Solid-State Electron. 49, 878–883
(2005),
http://dx.doi.org/10.1016/j.sse.2005.03.005
[28] A.F. Özdemir, A. Türüt, and A. Kökce, The double Gaussian
distribution of barrier heights in Au/n-GaAs Schottky diodes
from I–V–T characteristics, Semicond. Sci.
Technol. 21, 298–302 (2006),
http://dx.doi.org/10.1088/0268-1242/21/3/016
[29] P. Pipinys, A. Pipinienė, and A. Rimeika, Phonon-assisted
tunnelling in reverse biased Schottky diodes, J. Appl. Phys. 86,
6875–6878 (1999),
http://dx.doi.org/10.1063/1.371766
[30] P. Pipinys, A. Pipinienė, and A. Rimeika, Analysis of reverse
current–voltage characteristics of Schottky diodes based on
phonon–assisted tunnelling including Frenkel emission mechanism,
Solid-State Electron. 46, 1283–1287 (2002),
http://dx.doi.org/10.1016/S0038-1101(02)00070-9
[31] F.I. Dalidchik, Multiphonon tunnel process in a homogeneous
electric field, Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP] 74,
472–482 (1978)
[32] A. Kiveris, Š. Kudžmauskas, and P. Pipinys, Release of
electrons from traps by an electric field with phonon participation,
Phys. Status Solidi A 37, 321–327 (1976),
http://dx.doi.org/10.1002/pssa.2210370140
[33] K. Brennan and K. Hess, High field transport in GaAs, InP and
InAs, Solid-State Electron. 27, 347–357 (1984),
http://dx.doi.org/10.1016/0038-1101(84)90168-0
[34] J.L.T. Waugh and G. Dolling, Crystals dynamics of gallium
arsenide, Phys. Rev. 132, 2410–2412 (1963),
http://dx.doi.org/10.1103/PhysRev.132.2410
[35] K.M. Tracy, P.J. Hartlieb, S. Einfeldt, R.F. Davis, E.H. Hurt,
and R.J. Nemanich, Electrical and chemical characterization of the
Schottky barrier formed between clean n-GaN(001) surfaces
and Pt, Au, and Ag, J. Appl. Phys. 94, 3939–3948 (2003),
http://dx.doi.org/10.1063/1.1598630
[36] X.M. Shen, D.G. Zhao, Z.S. Liu, Z.F. Hu, H. Yang, and J.W.
Liang, Space-charge-limited currents in GaN Schottky diodes,
Solid-State Electron. 49, 847–852 (2005),
http://dx.doi.org/10.1016/j.sse.2005.02.003
[37] H.P. Hall, M.A. Awaah, and K. Das, Deep-level dominated
rectifying contacts for n-type GaN films, Phys. Status
Solidi A 201, 522–528 (2004),
http://dx.doi.org/10.1002/pssa.200306748
[38] K.P. Hsueh, Y.M. Hsin, and J.K. Sheu, Low Schottky barrier to
etched p-GaN using regrown AlInGaN and InGaN contact layer,
J. Appl. Phys. 99, 026106–026113 (2006),
http://dx.doi.org/10.1063/1.2164527
[39] A.M. Witowski, K. Pakula, J.M. Baranowski, M.L. Sadowski, and
P. Wyder, Electron effective mass in hexagonal GaN, Appl. Phys.
Lett. 75, 4154–4155 (1999),
http://dx.doi.org/10.1063/1.125567