[PDF]    http://dx.doi.org/10.3952/lithjphys.47107

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 51–57 (2007)


REVERSE-BIAS LEAKAGE IN SCHOTTKY DIODES
P. Pipinys, A. Rimeika, and V. Lapeika
Department of Physics, Vilnius Pedagogical University, Studentų 39, LT-08106 Vilnius, Lithuania
E-mail: fizdidkat@vpu.lt

Received 29 January 2007

Reverse-bias current–voltage (IR–V ) characteristics of Al-n/GaAs Schottky diodes have been studied in a temperature range from 92 to 333 K. The results are explained on the basis of phonon-assisted tunnelling model. It is shown that the temperature dependence of the reverse current IR could be caused by the temperature dependence of the electron tunnelling rate from traps in the metal–semiconductor interface to the conduction band of the semiconductor.
Temperature-dependent IRV data obtained by Zhang et al [J. Appl. Phys. 2006; 99: 023703] and Osvald et al [Microelectron. Eng. 2005; 81: 181] for Schottky diodes fabricated on n-GaN are reinterpreted in terms of a phonon-assisted tunnelling model. The temperature and bias voltages dependences of an apparent barrier height (activation energy) observed by other researchers are also explained in the framework of this model.
Keywords: GaN, 4H-SiC, pulsed VACH measurement, high electric field effects
PACS: 65.40.-b, 71.55.Eq, 72.20.Ht, 73.50.Fq


ATGALINĖ SROVĖ ŠOTKIO DIODUOSE
P. Pipinys, A. Rimeika, V. Lapeika
Vilniaus pedagoginis universitetas, Vilnius, Lietuva

Tirta krūvio pernaša Al-n/GaAs Šotkio (Schottky) dioduose. Išmatuotos srovės tankio priklausomybės 92–333 K temperatūros srityje, esant skirtingoms pridėtos atgalinės įtampos vertėms. Kai tos vertės mažos, eksperimentiškai parodyta, kad tiriamuose Šotkio dioduose atgalinės srovės tankio temperatūrinės priklausomybės yra termoaktyvacinio pobūdžio. Tokios eigos atgalinės srovės voltamperinių charakteristikų temperatūrinės priklausomybės aiškinamos fononais paskatintų elektronų tunelinių šuolių iš sandūroje esančių lygmenų į puslaidininkio laidumo juostą modeliu. Eksperimentiniai rezultatai palyginti su teorinėmis elektronų tunelinių šuolių spartos priklausomybėmis nuo elektrinio lauko stiprio ir temperatūros. Iš palyginimų gautas lokalizuotų elektronų tankis sandūros lygmenyse (≈1011 cm–2) ir įvertinti elektrinių laukų sandūroje stipriai.
Tuo pačiu modeliu aiškinamos kitų autorių išmatuotos atgalinių srovių voltamperinių charakteristikų temperatūrinės priklausomybės Ag/n-GaAs bei n-GaN Šotkio dioduose [13, 19, 26]. Taip pat aiškinamas [7, 12, 19, 20, 22] darbuose nustatytas barjero aukščio (aktyvacijos energijos) kitimas nuo pridėtos atgalinės įtampos ir temperatūros skirtingų medžiagų Šotkio dioduose.


References / Nuorodos


[1] S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley–Interscience, New York, 1981)
[2] R. Hackam and P. Harrop, Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes, IEEE Trans. Electron Devices ED-19, 1231–1238 (1972),
http://dx.doi.org/10.1109/T-ED.1972.17586
[3] J.H. Werner and H.H. Guttler, Barrier inhomogeneities at Schottky contacts, J. Appl. Phys. 69, 1522–1523 (1991),
http://dx.doi.org/10.1063/1.347243
[4] M.O. Aboelfotoh, Temperature dependence of the Schottky-barrier height of tungsten on n-type and p-type silicon, Appl. Phys. 69, 3351–3353 (1991). Solid-State Electron. 34, 51–55 (1991),
http://dx.doi.org/10.1016/0038-1101(91)90200-I
[5] P.G. McCafferty, A. Sellai, P. Dawson, and H. Elabd, Barrier characteristics of PtSi/p-Si Schottky diodes as determined from IVT measurements, Solid-State Electron. 39, 583–592 (1996),
http://dx.doi.org/10.1016/0038-1101(95)00162-X
[6] A. Sing, P. Cova, and R.A. Masut, Reverse IV and CV characteristics of Schottky barrier type diodes on Zn doped InP epilayers by metalorganic vapor phase epitaxy, J. Appl. Phys. 76, 2336–2342 (1994),
http://dx.doi.org/10.1063/1.357611
[7] M. Barus and D. Donoval, Analysis of I–V measurements on CrSi2–Si Schottky structures in a wide temperature range, Solid-State Electron. 36, 969–974 (1993),
http://dx.doi.org/10.1016/0038-1101(93)90112-4
[8] T.P. Chen, T.C. Lee, C.C. Ling, C.D. Beling, and S. Fung, Current transport and its effect on the determination of the Shottky-barrier height in a typical system: Gold on silicon, Solid-State Electron. 36, 949–954 (1993),
http://dx.doi.org/10.1016/0038-1101(93)90109-4
[9] K. Maeda, I. Umezu, H. Ikoma, and T. Yoshimura, Nonideal JV characteristics and interface states of an α-Si:H Schottky barrier, J. Appl. Phys. 68, 2858–2867 (1990),
http://dx.doi.org/10.1063/1.346418
[10] H. Ikoma and K. Maeda, Analysis of Si Schottky barrier characteristics based on a new interfacial layer model, Japan J. Appl. Phys. 30, 19–26 (1991).
http://dx.doi.org/10.1143/JJAP.30.19
[11] S. Chand and J. Kumar, Current–voltage characteristics and barrier parameters of Pd2Si/p-Si(111) Schottky diodes in a wide temperature range, Semicond. Sci. Technol. 10, 1680–1688 (1995).
http://dx.doi.org/10.1088/0268-1242/10/12/019
[12] G.P. Ru, R.L. Van Meirhaeghe, S. Forment, Y.L. Jiang, X.P. Qu, S. Zhu, and B.Z. Li, Voltage dependence of effective barrier height reduction in inhomogeneous Schottky diodes, Solid-State Electron. 49, 606–611 (2005).
http://dx.doi.org/10.1016/j.sse.2004.12.005
[13] M.A. Ebeoğlu, F. Temurt, and Z.Z. Öztürk, Ag/n-GaAs Schottky MIS diodes with surface insulating layers prepared using (NH4)2S solutions without water, Solid-State Electron. 42, 23–27 (1998)
[14] S. Karatas and S. Altindal, Temperature dependence of barrier heights of Au/n-type GaAs Schottky diodes, Solid-State Electron. 49, 1052–1054 (2005),
http://dx.doi.org/10.1016/j.sse.2005.02.005
[15] M. Nathan, Z. Shoshani, G. Ashkinazi, B. Meyler, and O. Zolotarevski, On the temperature dependence of the barrier height and ideality factor in high voltage Ni-nGaAs Schottky diodes, Solid-State Electron. 39, 1457–1462 (1996),
http://dx.doi.org/10.1016/0038-1101(96)00060-3
[16] S. Chand and J. Kumar, Evidence for the double distribution of barrier heights in Pd2Si/n-Si Schottky diodes from IVT measurements, Semicond. Sci. Technol. 11, 1203–1208 (1996),
http://dx.doi.org/10.1088/0268-1242/11/8/015
[17] S. Zhu, R.L. Van Meirhaeghe, C. Detavernier, F. Cardon, G.P. Ru, X.P. Qu, and B.Z. Li, Barrier height inhomogeneities of epitaxial CoSi2 Schottky contacts on n-Si(111), Solid-State Electron. 44, 625–631 (2000),
http://dx.doi.org/10.1016/S0038-1101(99)00268-3
[18] H. Cetin and E. Ayyildiz, Temperature dependence of electrical parameters of the Au/n-InP Schottky barrier diodes, Semicond. Sci. Technol. 20, 625–631 (2005),
http://dx.doi.org/10.1088/0268-1242/20/6/025
[19] J. Osvald, J. Kuzmik, G. Konstantinidis, P. Lobotka, and A. Georgakilas, Temperature dependence of GaN Schottky diodes IV characteristics, Microelectron. Eng. 81, 181–187 (2005),
http://dx.doi.org/10.1016/j.mee.2005.03.004
[20] A. Gümü, A. Türüt, and N. Yalcin, Temperature dependent barrier characteristics of CrNiCo alloy Schottky contacts on n-type molecular-beam epitaxy GaAs, J. Appl. Phys. 91, 245–250 (2002),
http://dx.doi.org/10.1063/1.1424054
[21] Y.L. Jiang, G.P. Ru, F. Lu, X.P. Qu, B.Z. Li, and S. Yang, Ni/Si solid phase reaction studied by temperature-dependent current–voltage technique, J. Appl. Phys. 93, 866–870 (2003),
http://dx.doi.org/10.1063/1.1527714
[22] M. Biber, Low-temperature current–voltage characteristics of MIS Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky diodes, Physica B 25, 138–148 (2003),
http://dx.doi.org/10.1016/S0921-4526(02)01515-6
[23] C.Y. Chang and S.M. Sze, Current transport across metal–semiconductor barriers, Solid-State Electron. 13, 727–740 (1970),
http://dx.doi.org/10.1016/0038-1101(70)90060-2
[24] Ö.S. Aniltürk and R. Turan, Electrical transport at a non-ideal CrSi2–Si junction, Solid-State Electron. 44, 41–48 (2000),
http://dx.doi.org/10.1016/S0038-1101(99)00204-X
[25] E.J. Miller, E.T. Yu, Waltereit, and J.S. Speck, Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy, Appl. Phys. Lett. 84, 535–541 (2004),
http://dx.doi.org/10.1063/1.1644029
[26] H. Zhang, E.J. Miller, and E.T. Yu, Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy, J. Appl. Phys. 99, 023703–023709 (2006),
http://dx.doi.org/10.1063/1.2159547
[27] W.P. Leroy, K. Opsomer, S. Forment, and R.L. Van Meirhaeghe, The barrier height inhomogeneity in identically prepared Au/n-GaAs Schottky barrier diodes, Solid-State Electron. 49, 878–883 (2005),
http://dx.doi.org/10.1016/j.sse.2005.03.005
[28] A.F. Özdemir, A. Türüt, and A. Kökce, The double Gaussian distribution of barrier heights in Au/n-GaAs Schottky diodes from IVT characteristics, Semicond. Sci. Technol. 21, 298–302 (2006),
http://dx.doi.org/10.1088/0268-1242/21/3/016
[29] P. Pipinys, A. Pipinienė, and A. Rimeika, Phonon-assisted tunnelling in reverse biased Schottky diodes, J. Appl. Phys. 86, 6875–6878 (1999),
http://dx.doi.org/10.1063/1.371766
[30] P. Pipinys, A. Pipinienė, and A. Rimeika, Analysis of reverse current–voltage characteristics of Schottky diodes based on phonon–assisted tunnelling including Frenkel emission mechanism, Solid-State Electron. 46, 1283–1287 (2002),
http://dx.doi.org/10.1016/S0038-1101(02)00070-9
[31] F.I. Dalidchik, Multiphonon tunnel process in a homogeneous electric field, Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP] 74, 472–482 (1978)
[32] A. Kiveris, Š. Kudžmauskas, and P. Pipinys, Release of electrons from traps by an electric field with phonon participation, Phys. Status Solidi A 37, 321–327 (1976),
http://dx.doi.org/10.1002/pssa.2210370140
[33] K. Brennan and K. Hess, High field transport in GaAs, InP and InAs, Solid-State Electron. 27, 347–357 (1984),
http://dx.doi.org/10.1016/0038-1101(84)90168-0
[34] J.L.T. Waugh and G. Dolling, Crystals dynamics of gallium arsenide, Phys. Rev. 132, 2410–2412 (1963),
http://dx.doi.org/10.1103/PhysRev.132.2410
[35] K.M. Tracy, P.J. Hartlieb, S. Einfeldt, R.F. Davis, E.H. Hurt, and R.J. Nemanich, Electrical and chemical characterization of the Schottky barrier formed between clean n-GaN(001) surfaces and Pt, Au, and Ag, J. Appl. Phys. 94, 3939–3948 (2003),
http://dx.doi.org/10.1063/1.1598630
[36] X.M. Shen, D.G. Zhao, Z.S. Liu, Z.F. Hu, H. Yang, and J.W. Liang, Space-charge-limited currents in GaN Schottky diodes, Solid-State Electron. 49, 847–852 (2005),
http://dx.doi.org/10.1016/j.sse.2005.02.003
[37] H.P. Hall, M.A. Awaah, and K. Das, Deep-level dominated rectifying contacts for n-type GaN films, Phys. Status Solidi A 201, 522–528 (2004),
http://dx.doi.org/10.1002/pssa.200306748
[38] K.P. Hsueh, Y.M. Hsin, and J.K. Sheu, Low Schottky barrier to etched p-GaN using regrown AlInGaN and InGaN contact layer, J. Appl. Phys. 99, 026106–026113 (2006),
http://dx.doi.org/10.1063/1.2164527
[39] A.M. Witowski, K. Pakula, J.M. Baranowski, M.L. Sadowski, and P. Wyder, Electron effective mass in hexagonal GaN, Appl. Phys. Lett. 75, 4154–4155 (1999),
http://dx.doi.org/10.1063/1.125567