[PDF]    http://dx.doi.org/10.3952/lithjphys.47109

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 15–20 (2007)


REORGANIZATION ENERGIES FOR CHARGE TRANSFER IN CARBAZOLE COMPOUND CONTAINING TRINITROFLUORENONE
G. Vektarisa and A. Vektarienėa,b
aInstitute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: vektaris@itpa.lt
bInstitute of Biochemistry, Mokslininkų 12, LT-08662 Vilnius, Lithuania

Received 15 February 2007

Semiempirical quantum chemical calculations were performed to estimate the reorganization energies for charge transfer process in carbazole containing compound doped with trinitrofluorenone. Geometries of carbazole and trinitrofluorenone molecules were optimized in neutral, cationic (carbazole), and anionic (trinitrofluorenone) forms. Obtained geometries were used to calculate energies of compounds in neutral and ionized forms. Nelsen’s method was used to calculate internal reorganization energy of self-exchange hole transfer reaction in carbazole. Cross-reaction of electron transfer from carbazole to trinitrofluorenone was calculated using Marcus cross relation. Free energy of this reaction was calculated too. Obtained values are discussed as concerns the suitability for effective charge separation reactions in carbazole compounds.
Keywords: charge transfer, reorganization energy, quantum chemistry
PACS: 82.30.Fi, 31.15.Ct, 31.50.Bc


KRŪVININKO PERNAŠOS REORGANIZACIJOS ENERGIJOS KARBAZOLO JUNGINYJE, TURINČIAME TRINITROFLUORENONO
G. Vektarisa, A. Vektarienėa,b
aVilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva
bBiochemijos institutas, Vilnius, Lietuva

Kvantinės chemijos metodais apskaičiuotas krūvininkų pernašą aprašantis parametras – vidinės reorganizacijos energija – karbazolo medžiagose, turinčiose trinitrofluorenono. Buvo optimizuoti karbazolo ir trinitrofluorenono neutralių, katijoninių (karbazolo) ir anijoninių (trinitrofluorenono) molekulių geometriniai pavidalai. Gauti molekulių geometriniai pavidalai buvo naudojami apskaičiuoti jų energijai neutraliose ir joninėse formose. Nelsen’o metodu buvo surasta skylutės pernašą karbazole aprašančios vidinės reorganizacijos energijos vertė. Elektrono šuoliui nuo karbazolo ant trinitrofluorenono ir atgal aprašyti buvo naudojamas Marcus’o sąryšis. Pastarajai krūvininko pernašos reakcijai taip pat apskaičiuota ir reakcijos laisvoji energija. Aptartas gautų rezultatų tinkamumas krūvininkų atskyrimo reakcijoms karbazolo junginiuose, naudojamuose elektrografiniuose sluoksniuose.


References / Nuorodos


[1] R.A. Marcus, Electron transfer reactions in chemistry. Theory and experiment, Rev. Mod. Phys. 65, 599-610 (1993) (and citation therein),
http://dx.doi.org/10.1103/RevModPhys.65.599
[2] G. Ramos, T. Belenquer, and D. Levy, A highly photoconductive poly(vinylcarbazole) / 2,4,7-trinitro-9-fluorenone sol–gel material that follows a classical charge-generation model, J. Phys. Chem. B 110, 24780–24785 (2006),
http://dx.doi.org/10.1021/jp0629184
[3] M. Pope and Ch.E. Swenberg, Electronic Processes in Organic Crystals (Oxford University Press, New York, 1982)
[4] E.A. Silinsh, M. Kurik, and V. Capek, Electronic Processes in Organic Molecular Crystals (Zinatne, Riga 1988) [in Russian]
[5] H. Sano and A. Mazumder, Model of thermalization of quasifree electrons in high-mobility liquids and its relationship with electron mobility, J. Chem. Phys. 66, 689–698 (1977),
http://dx.doi.org/10.1063/1.433943
[6] E.A. Silinsh and A.J. Jurgis, Photogenerated geminate charge-pair separation mechanisms in pentacene crystals, Chem. Phys. 94, 77–90 (1985),
http://dx.doi.org/10.1016/0301-0104(85)85067-9
[7] Š. Kudžmauskas, Photogeneration of geminate electron-hole pairs in quasi-one-dimensional aggregates. Theory of the tunneling in thermalization stage, Lithuanian Phys. J. 31, 511–521 (1991)
[8] L. Onsager, Initial recombination of ions, Phys. Rev. 54, 554–557 (1938),
http://dx.doi.org/10.1103/PhysRev.54.554
[9] Š. Kudžmauskas, Charge carrier hopping transport and generation in quasi-onedimensional disordered molecular structures, Lietuvos Fizikos Rinkinys [Sov. Phys. Collection] 26, 676–680 (1986)
[10] Š. Kudžmauskas and G. Vektaris, Theory of charge photogeneration in quasione-dimensional structures, Lithuanian Phys. J. 35, 183–189 (1995)
[11] S. Jakobsen, K.V. Mikkelsen, and S.U. Pedersen, Calculations of intramolecular reorganization energies for electron-transfer reactions involving organic systems, J. Phys. Chem. 100, 7411–7417 (1996),
http://dx.doi.org/10.1021/jp9535250
[12] S.F. Nelsen, S.C. Blackstock, and Y. Kim, Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations, J. Am. Chem. Soc. 109, 677–682 (1987),
http://dx.doi.org/10.1021/ja00237a007
[13] Sh. Ma, Xia. Zhang, H. Xu, Xin. Zhang, and Q. Zhang, AM1 and ab initio studies on the internal reorganization energy of self-exchange electron transfer reaction of several quinone derivatives, Chin. Sci. Bull. 46, 1242–1250 (2001),
http://dx.doi.org/10.1007/BF03184318
[14] R.A. Marcus, Schrödinger equation for strongly interacting electron-transfer systems, J. Phys. Chem. 96, 1753–1757 (1992),
http://dx.doi.org/10.1021/j100183a048
[15] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem. 14, 1347–1363 (1993),
http://dx.doi.org/10.1002/jcc.540141112
[16] P. Flukiger, H.P. Luthi, S. Portmenn, and J. Weber, MOLEKEL 4.0, Swiss Center for Scientific Computing (Manno, Switzerland, 2000)