[PDF]
http://dx.doi.org/10.3952/lithjphys.47109
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 15–20 (2007)
REORGANIZATION ENERGIES FOR
CHARGE TRANSFER IN CARBAZOLE COMPOUND CONTAINING
TRINITROFLUORENONE
G. Vektarisa and A. Vektarienėa,b
aInstitute of Theoretical Physics and Astronomy of
Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: vektaris@itpa.lt
bInstitute of Biochemistry, Mokslininkų 12, LT-08662
Vilnius, Lithuania
Received 15 February 2007
Semiempirical quantum chemical
calculations were performed to estimate the reorganization
energies for charge transfer process in carbazole containing
compound doped with trinitrofluorenone. Geometries of carbazole
and trinitrofluorenone molecules were optimized in neutral,
cationic (carbazole), and anionic (trinitrofluorenone) forms.
Obtained geometries were used to calculate energies of compounds
in neutral and ionized forms. Nelsen’s method was used to
calculate internal reorganization energy of self-exchange hole
transfer reaction in carbazole. Cross-reaction of electron
transfer from carbazole to trinitrofluorenone was calculated using
Marcus cross relation. Free energy of this reaction was calculated
too. Obtained values are discussed as concerns the suitability for
effective charge separation reactions in carbazole compounds.
Keywords: charge transfer,
reorganization energy, quantum chemistry
PACS: 82.30.Fi, 31.15.Ct, 31.50.Bc
KRŪVININKO PERNAŠOS
REORGANIZACIJOS ENERGIJOS KARBAZOLO JUNGINYJE, TURINČIAME
TRINITROFLUORENONO
G. Vektarisa, A. Vektarienėa,b
aVilniaus universiteto Teorinės fizikos ir
astronomijos institutas, Vilnius, Lietuva
bBiochemijos institutas, Vilnius, Lietuva
Kvantinės chemijos metodais apskaičiuotas
krūvininkų pernašą aprašantis parametras – vidinės reorganizacijos
energija – karbazolo medžiagose, turinčiose trinitrofluorenono.
Buvo optimizuoti karbazolo ir trinitrofluorenono neutralių,
katijoninių (karbazolo) ir anijoninių (trinitrofluorenono)
molekulių geometriniai pavidalai. Gauti molekulių geometriniai
pavidalai buvo naudojami apskaičiuoti jų energijai neutraliose ir
joninėse formose. Nelsen’o metodu buvo surasta skylutės pernašą
karbazole aprašančios vidinės reorganizacijos energijos vertė.
Elektrono šuoliui nuo karbazolo ant trinitrofluorenono ir atgal
aprašyti buvo naudojamas Marcus’o sąryšis. Pastarajai krūvininko
pernašos reakcijai taip pat apskaičiuota ir reakcijos laisvoji
energija. Aptartas gautų rezultatų tinkamumas krūvininkų atskyrimo
reakcijoms karbazolo junginiuose, naudojamuose elektrografiniuose
sluoksniuose.
References / Nuorodos
[1] R.A. Marcus, Electron transfer reactions in chemistry. Theory
and experiment, Rev. Mod. Phys. 65, 599-610 (1993) (and
citation therein),
http://dx.doi.org/10.1103/RevModPhys.65.599
[2] G. Ramos, T. Belenquer, and D. Levy, A highly photoconductive
poly(vinylcarbazole) / 2,4,7-trinitro-9-fluorenone sol–gel material
that follows a classical charge-generation model, J. Phys. Chem. B
110, 24780–24785 (2006),
http://dx.doi.org/10.1021/jp0629184
[3] M. Pope and Ch.E. Swenberg, Electronic Processes in Organic
Crystals (Oxford University Press, New York, 1982)
[4] E.A. Silinsh, M. Kurik, and V. Capek, Electronic Processes
in Organic Molecular Crystals (Zinatne, Riga 1988) [in
Russian]
[5] H. Sano and A. Mazumder, Model of thermalization of quasifree
electrons in high-mobility liquids and its relationship with
electron mobility, J. Chem. Phys. 66, 689–698 (1977),
http://dx.doi.org/10.1063/1.433943
[6] E.A. Silinsh and A.J. Jurgis, Photogenerated geminate
charge-pair separation mechanisms in pentacene crystals, Chem. Phys.
94, 77–90 (1985),
http://dx.doi.org/10.1016/0301-0104(85)85067-9
[7] Š. Kudžmauskas, Photogeneration of geminate electron-hole pairs
in quasi-one-dimensional aggregates. Theory of the tunneling in
thermalization stage, Lithuanian Phys. J. 31, 511–521 (1991)
[8] L. Onsager, Initial recombination of ions, Phys. Rev. 54,
554–557 (1938),
http://dx.doi.org/10.1103/PhysRev.54.554
[9] Š. Kudžmauskas, Charge carrier hopping transport and generation
in quasi-onedimensional disordered molecular structures, Lietuvos
Fizikos Rinkinys [Sov. Phys. Collection] 26, 676–680 (1986)
[10] Š. Kudžmauskas and G. Vektaris, Theory of charge
photogeneration in quasione-dimensional structures, Lithuanian Phys.
J. 35, 183–189 (1995)
[11] S. Jakobsen, K.V. Mikkelsen, and S.U. Pedersen, Calculations of
intramolecular reorganization energies for electron-transfer
reactions involving organic systems, J. Phys. Chem. 100,
7411–7417 (1996),
http://dx.doi.org/10.1021/jp9535250
[12] S.F. Nelsen, S.C. Blackstock, and Y. Kim, Estimation of inner
shell Marcus terms for amino nitrogen compounds by molecular orbital
calculations, J. Am. Chem. Soc. 109, 677–682 (1987),
http://dx.doi.org/10.1021/ja00237a007
[13] Sh. Ma, Xia. Zhang, H. Xu, Xin. Zhang, and Q. Zhang, AM1 and ab
initio studies on the internal reorganization energy of
self-exchange electron transfer reaction of several quinone
derivatives, Chin. Sci. Bull. 46, 1242–1250 (2001),
http://dx.doi.org/10.1007/BF03184318
[14] R.A. Marcus, Schrödinger equation for strongly interacting
electron-transfer systems, J. Phys. Chem. 96, 1753–1757
(1992),
http://dx.doi.org/10.1021/j100183a048
[15] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S.
Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su,
T.L. Windus, M. Dupuis, and J.A. Montgomery, General atomic and
molecular electronic structure system, J. Comput. Chem. 14,
1347–1363 (1993),
http://dx.doi.org/10.1002/jcc.540141112
[16] P. Flukiger, H.P. Luthi, S. Portmenn, and J. Weber, MOLEKEL
4.0, Swiss Center for Scientific Computing (Manno,
Switzerland, 2000)