[PDF]
http://dx.doi.org/10.3952/lithjphys.47110
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 63–68 (2007)
SOL–GEL PREPARATION OF
NANOCRYSTALLINE CaWO4
A. Katelnikovasa, L. Grigorjevab, D. Millersb,
V. Pankratovb, and A. Kareivaa
aFaculty of Chemistry, Vilnius University,
Naugarduko 24, LT-03225 Vilnius, Lithuania
E-mail: aivaras.kareiva@chf.vu.lt
bInstitute of Solid State Physics, University of
Latvia, Kengaraga 8, LV-1063 Riga, Latvia
Received 1 December 2006
Nanocrystalline CaWO4
has been synthesized by a sol–gel method using tungsten (VI)
oxide, WO3, and calcium nitrate tetrahydrate, Ca(NO3)2·4H2O
as starting materials. The synthesis leads to a sol–gel process
when citric or tartaric acids are introduced into the solution
obtained by dissolving WO3 in ammonia. Citric and
tartaric acids have great effect on stabilizing the precursor
solution. The results have shown that the single phase product was
obtained when the gel was heat-treated at 800 °C. The obtained
CaWO4 particles ranged from 350 to 850 nm in size and
showed emission in the blue region. CaWO4 ceramics has
been characterized by means of thermogravimetric and differential
thermal analysis (TG/DTA), infrared spectroscopy (IR), X-ray
diffraction (XRD), scanning electron microscopy (SEM), and
photoluminescence (PL).
Keywords: calcium tungstate, sol–gel,
X-ray diffraction, photoluminescence
PACS: 42.70.-a, 61.46.-w, 68.37.Hk, 78.67.Bf
NANOKRISTALINIO CaWO4
SINTEZĖ ZOLIŲ IR GELIŲ METODU
A. Katelnikovasa, L. Grigorjevab, D.
Millersb, V. Pankratovb, A. Kareivaa
aVilniaus universitetas, Vilnius, Lietuva
bLatvijos universiteto Kietojo kūno fizikos
institutas, Ryga, Latvija
Zolių ir gelių metodu susintetintas
nanokristalinis kalcio volframatas (CaWO4) (pradinėmis
medžiagomis buvo WO3 ir Ca(NO3)2·4H2O).
Citrinos ir vyno rūgštys buvo naudojamos kaip kompleksonai.
Nustatyta, kad galutinio produkto morfologija ir gautų dalelių
dydis priklauso nuo imtos rūgšties. CaWO4 dalelių dydis
svyravo nuo 350 iki 850 nm. Rezultatai parodė, kad iškaitinus
gelius 800 °C temperatūroje susiformavo šelito kristalinės
struktūros vienfazis CaWO4, skleidžiantis mėlynos
spektro srities šviesą. Susintetintas kalcio volframatas tirtas
naudojant termogravimetrinės-diferencinės terminės analizės
(TG/DTA), infraraudonosios spektrometrijos (IR), Rentgeno
spindulių difrakcijos (XRD), skenuojančiosios elektroninės
mikroskopijos (SEM) bei fotoliuminescencinės analizės (PL)
metodus.
References / Nuorodos
[1] R. Manalert and M.N. Rahaman, Sol–gel processing and sintering
of yttrium aluminum garnet (YAG) powders, J. Mater. Sci. 31,
3453–3458 (1996),
http://dx.doi.org/10.1007/BF00360748
[2] E. Comini, A. Toncelli, M. Tonelli, E. Zannoni, E. Cavalli, A.
Speghini, and M. Bettinelli, Optical spectroscopy and fluorescence
dynamics of Er3+ in Ca3Sc2Ge3O12
crystal, J. Opt. Soc. Am. B 14, 1938–1944 (1997),
http://dx.doi.org/10.1364/JOSAB.14.001938
[3] J.T. Vega-Duran, O. Barbosa-Garcia, L.A. Diaz-Torres, M.A.
Meneses-Nava, and D.S. Sumida, Effects of energy back transfer on
the luminescence of Yb and Er ions in YAG, Appl. Phys. Lett. 76,
2032–2034 (2000),
http://dx.doi.org/10.1063/1.126245
[4] N.V. Kuleshov, A.A. Lagatsky, A.V. Podlipensky, V.P. Mikhailov,
and G. Huber, Pulsed laser operation of Yb-doped KY(WO4)2
and KGd(WO4)2, Opt. Lett. 22,
1317–1319 (1997),
http://dx.doi.org/10.1364/OL.22.001317
[5] Y. Urata, T. Fukuda, H. Ito, and S. Wada, Laser performance of
neodymium-doped lanthanum tungstate crystals, Jpn. J. Appl. Phys.
40, 6453–6454 (2001),
http://dx.doi.org/10.1143/JJAP.40.6453
[6] Y. Chen, X. Lin, Z. Luo, and Y. Huang, Spectroscopic properties
of Nd3+ ions in La2(WO4)3 crystal, Chem. Phys.
Lett. 381, 598–604 (2003),
http://dx.doi.org/10.1016/j.cplett.2003.10.046
[7] V.N. Kolobanov, I.A. Kamenskikh, V.V. Mikhailin, I.N. Shpinkov,
D.A. Spassky, B.I. Zadneprovsky, L.I. Potkin, and G. Zimmerer,
Optical and luminescent properties of anisotropic tungstate
crystals, Nucl. Instrum. Methods A 486, 496–503 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)00760-X
[8] V. Nagirnyi, E. Feldbach, L. Jonsson, M. Kirm, A. Lushchik, C.
Lushchik, L.L. Nagornaya, V.D. Ryzhikov, F. Savikhiu, G. Svensson,
and I.A. Tupitsina, Excitonic and recombination processes in CaWO4
and CdWO4 scintillators under synchrotron irradiation,
Radiat. Meas.
29, 247–250 (1998),
http://dx.doi.org/10.1016/S1350-4487(98)00017-1
[9] P. Mogilevsky, T.A. Parthasarathy, and M.D. Petry, Anisotropy in
room temperature microhardness and fracture of CaWO4
scheelite, Acta Materialia 52, 5529–5537 (2004),
http://dx.doi.org/10.1016/j.actamat.2004.08.022
[10] D.J. Norris, D.E. Arlinghaus, L. Meng, R. Heiny, and L.E.
Scriven, Opaline photonic crystals: How does self-assembly work?
Adv. Mater. 16, 1393–1399 (2004),
http://dx.doi.org/10.1002/adma.200400455
[11] M. Remskar, Inorganic nanotubes, Adv. Mater. 16,
1497–1504 (2004),
http://dx.doi.org/10.1002/adma.200306428
[12] S.J. Chen, J. Li, X.T. Chen, J.M. Hong, Z. Xue, and X.Z. You,
Solvothermal synthesis and characterization of crystalline CaWO4
nanoparticles, J. Cryst. Growth 253, 361–365 (2003),
http://dx.doi.org/10.1016/S0022-0248(03)01089-3
[13] L.J. Burcham and I.E. Wachs, Vibrational analysis of the two
non-equivalent, tetrahedral tungstate (WO4) units in Ce2(WO4)3
and La2(WO4)3, Spectrochim. Acta A
54, 1355–1368 (1998),
http://dx.doi.org/10.1016/S1386-1425(98)00036-5
[14] R.R. Khanna and E.R. Lippincott, Infrared spectra of some
scheelite structures, Spectrochim. Acta A 24, 905–908
(1968),
http://dx.doi.org/10.1016/0584-8539(68)80189-8
[15] E. Garskaite, K. Gibson, A. Leleckaite, J. Glaser, D.
Niznansky, A. Kareiva, and H.-J. Meyer, On the synthesis and
characterization of iron-containing garnets (Y3Fe5O12,
YIG and Fe3Al5O12, IAG), Chem.
Phys. 323, 204–210 (2006),
http://dx.doi.org/10.1016/j.chemphys.2005.08.055
[16] D. Chen, G. Shen, K. Tang, H. Zheng, and Y. Qian,
Low-temperature synthesis of metal tungstates nanocrystallites in
ethylene glycol, Mater. Res. Bull. 38, 1783–1789 (2003),
http://dx.doi.org/10.1016/j.materresbull.2003.09.004