[PDF]
http://dx.doi.org/10.3952/lithjphys.47116
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 103–108 (2007)
GAUSSIAN DECOMPOSITION OF
ABSORPTION SPECTRA OF PERIPHERAL LIGHT-HARVESTING COMPLEXES OF
PHOTOSYNTHETIC BACTERIA
V. Urbonienėa, O. Vrublevskajab, G.
Trinkūnasb, M. Stakvilevičiusc, A. Galld,
B. Robertd, and L. Valkūnasb,e
aDepartment of General Physics and Spectroscopy,
Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: vidita.urbo@gmail.com
bInstitute of Physics, Savanorių 231, LT-02300
Vilnius, Lithuania
cDepartment of Mathematics, Šiauliai University,
Višinskio 19, LT-77156 Šiauliai, Lithuania
dInstitut de Biologie et Technologie de Saclay,
C.E.A. Saclay, 91191 Gif-sur-Yvette Cedex, France
eDepartment of Theoretical Physics, Vilnius
University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
Received 25 January 2007
The absorption spectra of
light-harvesting complexes (LH2) purified from Rhodobacter
sphaeroides in 60% glycerol measured in the 4–300 K temperature
range have been analysed in terms of linear combination of
symmetric Gaussian subbands. All absorption spectra of LH2 are
well fitted with sixteen Gaussian subbands. To attribute them to
the B800 and B850 bands, the ratio of the integral intensity of
those bands is considered, assuming that it should be close to 2
and independent of temperature. From the analysis of the B850
absorption spectrum it is concluded that the maximal value of the
resonance interaction between the pigments in the B850 ring should
be 300 and 310 cm–1 at room temperature and 4 K,
respectively.
Keywords: absorption spectra, peripheral
light-harvesting pigment-protein complex, photosynthetic bacteria,
Gaussian decomposition
PACS: 71.35.-y, 87.15.-v, 87.15.Aa
FOTOSINTETINANČIŲ BAKTERIJŲ
PERIFERINIŲ ŠVIESĄ SURENKANČIŲ KOMPLEKSŲ SUGERTIES SPEKTRŲ
SKAIDYMAS GAUSO SANDAIS
V. Urbonienėa, O. Vrublevskajab, G.
Trinkūnasb, M. Stakvilevičiusc, A. Galld,
B. Robertd, and L. Valkūnasb,e
aVilniaus universitetas, Vilnius, Lietuva
bFizikos institutas, Vilnius, Lietuva
cŠiaulių universitetas, Šiauliai, Lietuva
dC.E.A. Saclay, Prancūzija
Periferinių šviesą surenkančių kompleksų LH2,
išskirtų iš Rhodobacter sphaeroides fotosintetinančių
bakterijų, esančių 60 % Tris[hidrometil]aminometano (Tris.
Cl)/glicerolio buferyje, sugerties spektrų kontūrai išskaidyti
Gauso sandais. Visi sugerties spektrai buvo aproksimuoti
šešiolikos Gauso sandų sumos funkcija. Gauso sandai buvo priskirti
B800 ir B850 sugerties juostoms, padarius prielaidą, kad šių
juostų integralinio intensyvumo santykis turi būti maždaug 2 ir
nepriklausyti nuo temperatūros.
Gauso sandai, priskirti B850 sugerties juostoms, leido įvertinti
tankiau išdėstytų bakteriochlorofilo pigmentų rezonansinę sąveiką,
kurios dydis 300 cm–1 kambario temperatūroje ir 310 cm–1
4 K temperatūroje. Šią nežymią rezonansinės sąveikos priklausomybę
nuo temperatūros galima aiškinti tirpiklio dielektrinės konstantos
priklausomybe nuo temperatūros.
References / Nuorodos
[1] H. van Amerongen, L. Valkunas, and R. van Grondelle,
Photosynthetic Excitons (World Scientific, Singapore, 2000),
http://dx.doi.org/10.1142/3609
[2] R.E. Blankenship, Molecular Mechanisms of Photosynthesis
(Blackwell Science, Oxford, 2002),
http://dx.doi.org/10.1002/9780470758472
[3] G. McDermott, S.M. Prince, A.A. Freer, A.M.
Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, and N.W. Isaacs,
Crystal structure of an integral membrane light-harvesting complex
from photosynthetic bacteria, Nature 374, 517–521 (1995),
http://dx.doi.org/10.1038/374517a0
[4] M.Z. Papiz, S.M. Prince, T. Howard, R.J. Cogdell, and N.W.
Isaacs, The structure and thermal motion of the the B800-850 LH2
complex from Rps. acidophila at 2.0 Å resolution and 100 K:
New structural features and functionally relevant motions, J. Mol.
Biol.
326(5), 1523–1538 (2003),
http://dx.doi.org/10.1016/S0022-2836(03)00024-X
[5] V. Urboniene, O. Vrublevskaja, A. Gall, G. Trinkunas, B. Robert,
and L. Valkunas, Temperature broadening of LH2 absorption in
glycerol solution, Photosynthesis Res. 86(1–2), 49–59
(2005),
http://dx.doi.org/10.1007/s11120-005-2748-9
[6] O. Vrublevskaja, V. Urbonienė, G. Trinkūnas, L. Valkūnas, A.
Gall, and B. Robert, Estimation of the spectral density function of
LH2 complexes from the temperature dependence of the absorption
spectra, Lithuanian J. Phys. 46(1), 39–46 (2006),
http://dx.doi.org/10.3952/lithjphys.46117
[7] V. Urboniene, O. Vrublevskaja, G. Trinkunas, A. Gall, B. Robert,
and L. Valkunas, Solvation efect of bacteriochlorophyll excitons in
light-harvesting complexes LH2, Biophys. J. (2007, in press),
http://dx.doi.org/10.1529/biophysj.106.103093
[8] R. van Grondelle and V.I. Novoderezhkin, Energy transfer in
photosynthesis: Experimental insights and quantitative models, Phys.
Chem. Chem. Phys. 8(7), 793–807 (2006),
http://dx.doi.org/10.1039/B514032C
[9] S. Mukamel, Principles of Nonlinear Optical Spectroscopy
(Oxford, New York, 1995)
[10] T. Renger and R.A. Marcus, On the relation of protein dynamics
and exciton relaxation in pigment-protein complexes: An estimation
of the spectral density and a theory for the calculation of optical
spectra, J. Chem. Phys. 116(22), 9997–10019 (2002),
http://dx.doi.org/10.1063/1.1470200
[11] S. Jang and R.J. Silbey, Single complex line shapes of the B850
band of LH2, J. Chem. Phys., 118(20), 9324–9336 (2003),
http://dx.doi.org/10.1063/1.1569240
[12] A. Freiberg, M. Rätsep, K. Timpmann, G. Trinkunas, and N.W.
Woodbury, Self-trapped excitons in LH2 antenna complexes between 5K
and ambient temperature, J. Phys. Chem. B 107(41),
11510–11519 (2003),
http://dx.doi.org/10.1021/jp0344848
[13] A. Freiberg, K. Timpmann, R. Ruus, and N.W. Woodbury,
Disordered exciton analysis of linear and nonlinear absorption
spectra of antenna bacteriochlorophyll aggregates: LH2-only mutant
chromatophores of Rhodobacter sphaeroides at 8 K under
spectrally selective excitation, J. Phys. Chem. B 103(45),
10032–10041 (1999),
http://dx.doi.org/10.1021/jp991676n
[14] K. Timpmann, G. Trinkunas, J.D. Olsen, C.N. Hunter, and A.
Freiberg, Bandwidth of excitons in bacterial antenna chromoproteins.
Chem. Phys. Lett. 398(4-6), 384–388 (2004),
http://dx.doi.org/10.1016/j.cplett.2004.09.090
[15] H.M. Wu, N.R.S. Reddy, and G.J. Small, Direct observation and
hole burning of the lowest exciton level (B870) of the LH2 antenna
complex of Rhodopseudomonas acidophila (strain 10050), J.
Phys. Chem., B 101(4), 651–656 (1997),
http://dx.doi.org/10.1021/jp962766k
[16] M.H.C. Koolhaas, R.N. Frese, G.J.S. Fowler, T.S. Bibby, S.
Georgakopoulou, G. van der Zwan, C.N. Hunter, and R. van Grondelle,
Identification of the upper exciton component of the B850
bacteriochlorophylls of the LH2 antenna complex, using a B800-free
mutant of Rhodobacter sphaeroides, Biochem. 37(14),
4693–4698 (1998),
http://dx.doi.org/10.1021/bi973036l
[17] S. Georgakopoulou, R.N. Fresse, E. Johnson, C. Koolhaas, R.J.
Cogdell, R. van Grondelle, and G. van der Zwan, Absorption and CD
spectroscopy and modeling of various LH2 complexes from purple
bacteria, Biophys. J. 82(4), 2184–2197 (2002),
http://dx.doi.org/10.1016/S0006-3495(02)75565-3
[18] A. Gall and B. Robert, Characterization of the different
peripheral light-harvesting complexes from high- and low-light grown
cells from Rhodopseudomonas palustris, Biochem.38(6),
5185–5190 (1999),
http://dx.doi.org/10.1021/bi982486q
[19] R.C. Jennings, R. Bassi, F.M. Garlaxhi, P. Dainese, and G.
Zucchelli, Distribution of the chlorophyll spectral forms in the
chlorophyll-protein complexes of photosystem II antenna, Biochem.
32(13), 3203–3210 (1993),
http://dx.doi.org/10.1021/bi00064a002
[20] G. Trinkunas, J.P. Connelly, M.G. Müller, L. Valkunas, and A.R.
Holzwarth, Model for the excitation dynamics in the light-harvesting
complex II from higher plants, J. Phys. Chem. B 101(37),
7313–7320 (1997),
http://dx.doi.org/10.1021/jp963968j