[PDF]    http://dx.doi.org/10.3952/lithjphys.47116

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 103–108 (2007)


GAUSSIAN DECOMPOSITION OF ABSORPTION SPECTRA OF PERIPHERAL LIGHT-HARVESTING COMPLEXES OF PHOTOSYNTHETIC BACTERIA
V. Urbonienėa, O. Vrublevskajab, G. Trinkūnasb, M. Stakvilevičiusc, A. Galld, B. Robertd, and L. Valkūnasb,e
aDepartment of General Physics and Spectroscopy, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: vidita.urbo@gmail.com
bInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
cDepartment of Mathematics, Šiauliai University, Višinskio 19, LT-77156 Šiauliai, Lithuania
dInstitut de Biologie et Technologie de Saclay, C.E.A. Saclay, 91191 Gif-sur-Yvette Cedex, France
eDepartment of Theoretical Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania

Received 25 January 2007

The absorption spectra of light-harvesting complexes (LH2) purified from Rhodobacter sphaeroides in 60% glycerol measured in the 4–300 K temperature range have been analysed in terms of linear combination of symmetric Gaussian subbands. All absorption spectra of LH2 are well fitted with sixteen Gaussian subbands. To attribute them to the B800 and B850 bands, the ratio of the integral intensity of those bands is considered, assuming that it should be close to 2 and independent of temperature. From the analysis of the B850 absorption spectrum it is concluded that the maximal value of the resonance interaction between the pigments in the B850 ring should be 300 and 310 cm–1 at room temperature and 4 K, respectively.
Keywords: absorption spectra, peripheral light-harvesting pigment-protein complex, photosynthetic bacteria, Gaussian decomposition
PACS: 71.35.-y, 87.15.-v, 87.15.Aa


FOTOSINTETINANČIŲ BAKTERIJŲ PERIFERINIŲ ŠVIESĄ SURENKANČIŲ KOMPLEKSŲ SUGERTIES SPEKTRŲ SKAIDYMAS GAUSO SANDAIS
V. Urbonienėa, O. Vrublevskajab, G. Trinkūnasb, M. Stakvilevičiusc, A. Galld, B. Robertd, and L. Valkūnasb,e
aVilniaus universitetas, Vilnius, Lietuva
bFizikos institutas, Vilnius, Lietuva
cŠiaulių universitetas, Šiauliai, Lietuva
dC.E.A. Saclay, Prancūzija

Periferinių šviesą surenkančių kompleksų LH2, išskirtų iš Rhodobacter sphaeroides fotosintetinančių bakterijų, esančių 60 % Tris[hidrometil]aminometano (Tris. Cl)/glicerolio buferyje, sugerties spektrų kontūrai išskaidyti Gauso sandais. Visi sugerties spektrai buvo aproksimuoti šešiolikos Gauso sandų sumos funkcija. Gauso sandai buvo priskirti B800 ir B850 sugerties juostoms, padarius prielaidą, kad šių juostų integralinio intensyvumo santykis turi būti maždaug 2 ir nepriklausyti nuo temperatūros.
Gauso sandai, priskirti B850 sugerties juostoms, leido įvertinti tankiau išdėstytų bakteriochlorofilo pigmentų rezonansinę sąveiką, kurios dydis 300 cm–1 kambario temperatūroje ir 310 cm–1 4 K temperatūroje. Šią nežymią rezonansinės sąveikos priklausomybę nuo temperatūros galima aiškinti tirpiklio dielektrinės konstantos priklausomybe nuo temperatūros.


References / Nuorodos


[1] H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Excitons (World Scientific, Singapore, 2000),
http://dx.doi.org/10.1142/3609
[2] R.E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science, Oxford, 2002),
http://dx.doi.org/10.1002/9780470758472
[3] G. McDermott, S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, and N.W. Isaacs, Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria, Nature 374, 517–521 (1995),
http://dx.doi.org/10.1038/374517a0
[4] M.Z. Papiz, S.M. Prince, T. Howard, R.J. Cogdell, and N.W. Isaacs, The structure and thermal motion of the the B800-850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: New structural features and functionally relevant motions, J. Mol. Biol. 326(5), 1523–1538 (2003),
http://dx.doi.org/10.1016/S0022-2836(03)00024-X
[5] V. Urboniene, O. Vrublevskaja, A. Gall, G. Trinkunas, B. Robert, and L. Valkunas, Temperature broadening of LH2 absorption in glycerol solution, Photosynthesis Res. 86(1–2), 49–59 (2005),
http://dx.doi.org/10.1007/s11120-005-2748-9
[6] O. Vrublevskaja, V. Urbonienė, G. Trinkūnas, L. Valkūnas, A. Gall, and B. Robert, Estimation of the spectral density function of LH2 complexes from the temperature dependence of the absorption spectra, Lithuanian J. Phys. 46(1), 39–46 (2006),
http://dx.doi.org/10.3952/lithjphys.46117
[7] V. Urboniene, O. Vrublevskaja, G. Trinkunas, A. Gall, B. Robert, and L. Valkunas, Solvation efect of bacteriochlorophyll excitons in light-harvesting complexes LH2, Biophys. J. (2007, in press),
http://dx.doi.org/10.1529/biophysj.106.103093
[8] R. van Grondelle and V.I. Novoderezhkin, Energy transfer in photosynthesis: Experimental insights and quantitative models, Phys. Chem. Chem. Phys. 8(7), 793–807 (2006),
http://dx.doi.org/10.1039/B514032C
[9] S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995)
[10] T. Renger and R.A. Marcus, On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra, J. Chem. Phys. 116(22), 9997–10019 (2002),
http://dx.doi.org/10.1063/1.1470200
[11] S. Jang and R.J. Silbey, Single complex line shapes of the B850 band of LH2, J. Chem. Phys., 118(20), 9324–9336 (2003),
http://dx.doi.org/10.1063/1.1569240
[12] A. Freiberg, M. Rätsep, K. Timpmann, G. Trinkunas, and N.W. Woodbury, Self-trapped excitons in LH2 antenna complexes between 5K and ambient temperature, J. Phys. Chem. B 107(41), 11510–11519 (2003),
http://dx.doi.org/10.1021/jp0344848
[13] A. Freiberg, K. Timpmann, R. Ruus, and N.W. Woodbury, Disordered exciton analysis of linear and nonlinear absorption spectra of antenna bacteriochlorophyll aggregates: LH2-only mutant chromatophores of Rhodobacter sphaeroides at 8 K under spectrally selective excitation, J. Phys. Chem. B 103(45), 10032–10041 (1999),
http://dx.doi.org/10.1021/jp991676n
[14] K. Timpmann, G. Trinkunas, J.D. Olsen, C.N. Hunter, and A. Freiberg, Bandwidth of excitons in bacterial antenna chromoproteins. Chem. Phys. Lett. 398(4-6), 384–388 (2004),
http://dx.doi.org/10.1016/j.cplett.2004.09.090
[15] H.M. Wu, N.R.S. Reddy, and G.J. Small, Direct observation and hole burning of the lowest exciton level (B870) of the LH2 antenna complex of Rhodopseudomonas acidophila (strain 10050), J. Phys. Chem., B 101(4), 651–656 (1997),
http://dx.doi.org/10.1021/jp962766k
[16] M.H.C. Koolhaas, R.N. Frese, G.J.S. Fowler, T.S. Bibby, S. Georgakopoulou, G. van der Zwan, C.N. Hunter, and R. van Grondelle, Identification of the upper exciton component of the B850 bacteriochlorophylls of the LH2 antenna complex, using a B800-free mutant of Rhodobacter sphaeroides, Biochem. 37(14), 4693–4698 (1998),
http://dx.doi.org/10.1021/bi973036l
[17] S. Georgakopoulou, R.N. Fresse, E. Johnson, C. Koolhaas, R.J. Cogdell, R. van Grondelle, and G. van der Zwan, Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria, Biophys. J. 82(4), 2184–2197 (2002),
http://dx.doi.org/10.1016/S0006-3495(02)75565-3
[18] A. Gall and B. Robert, Characterization of the different peripheral light-harvesting complexes from high- and low-light grown cells from Rhodopseudomonas palustris, Biochem.38(6), 5185–5190 (1999),
http://dx.doi.org/10.1021/bi982486q
[19] R.C. Jennings, R. Bassi, F.M. Garlaxhi, P. Dainese, and G. Zucchelli, Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of photosystem II antenna, Biochem. 32(13), 3203–3210 (1993),
http://dx.doi.org/10.1021/bi00064a002
[20] G. Trinkunas, J.P. Connelly, M.G. Müller, L. Valkunas, and A.R. Holzwarth, Model for the excitation dynamics in the light-harvesting complex II from higher plants, J. Phys. Chem. B 101(37), 7313–7320 (1997),
http://dx.doi.org/10.1021/jp963968j