[PDF]
http://dx.doi.org/10.3952/lithjphys.47202
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 185–194 (2007)
WHY THE SPIN-FET DOES NOT WORK?*
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: dargys@pfi.lt
Received 21 March 2007
The spin-FET (spin field effect
transistor) is the spintronics device the operation of which is
based on unique properties of free electron or hole spin in
semiconductors. In the spin-FET, the modulation of channel
conductance is achieved by control of spin direction via the
spin–orbit interaction. The present article, firstly, critically
reviews the main difficulties encountered in realizing the
spin-FET. Secondly, using the concept of the spin surface, general
spin properties of 2D holes in p-type channel of the FET are
considered. The complex nature of the spin surfaces of the
ballistic 2D holes is demonstrated. It is shown that in optimizing
the spin-FET, in addition to the dispersion law of the channel one
should pay a special attention on how the spin surface transforms
between spin injector and collector.
Keywords: spintronics, spin-FET, hole
spin, spin–orbit interaction, quantum well
PACS: 71.70.Ej, 75.10.Dg, 85.30.Tv
*The report presented at the 37th Lithuanian National Physics
Conference, 11–13 June 2007, Vilnius, Lithuania.
KODĖL NEVEIKIA SUKINIO
TRANZISTORIUS?
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Sukinio tranzistorius yra vienas iš
spintronikos prietaisų, pasiūlytas dar 1990 m., kurio veikimas
grindžiamas unikaliomis laisvojo elektrono ir skylės sukinio
savybėmis puslaidininkiuose. Tokiame tranzistoriuje elektrinio
laidumo moduliacija, panašiai kaip optiniame poliarizaciniame
moduliatoriuje, valdoma elektriniu lauku, pakeičiant elektrono
sukinio poliarizaciją. Ryšys tarp elektrinio lauko ir sukinio
sukuriamas per sukinio ir orbitos sąveiką. Deja, iki šiol nepavyko
pagaminti veikiančio sukinio tranzistoriaus, nors moduliacijos
galimybės buvo pademonstruotos. Pranešime trumpai apžvelgtas tokio
tranzistoriaus veikimo principas, pagrindiniai parametrai,
lemiantys jo veikimą, ir sunkumai, su kuriais susiduriama, bandant
pagaminti tranzistorių. Ypatingas dėmesys kreipiamas į dvimatės
protakos sukinio savybes, tam pasitelkiant autoriaus pasiūlytą
sukinio paviršiaus koncepciją. Parodyta, kaip sukinio paviršiaus
pavidalas priklauso nuo protakos energinio spektro ir balistinės
skylės greičio protakoje. Taip pat parodyta, kaip galima
pasinaudoti sukinio paviršiais, optimizuojant sukinio injekciją iš
feromagnetiko į dvimatę protaką.
References / Nuorodos
[1] S. Datta and B. Das, Electronic analog of the electro-optic
modulator, Appl. Phys. Lett. 56(2), 665–667 (1990),
http://dx.doi.org/10.1063/1.102730
[2] Y.A. Bychkov and E.I. Rashba, Oscillatory effects and the
magnetic susceptibility of carriers in inversion layers, J. Phys. C
17(33), 6039–6045 (1984),
http://dx.doi.org/10.1088/0022-3719/17/33/015
[3] R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer-Verlag,
Berlin–Heidelberg–New York, 2003),
http://dx.doi.org/10.1007/b13586
[4] A. Dargys, Hole spin surfaces in A3B5
semiconductors, Phys. Status Solidi B 241(13), 2954–2961
(2004),
http://dx.doi.org/10.1002/pssb.200402078
[5] A. Dargys, Spin of valence-band holes in wurtzite
semiconductors, Phys. Rev. B 72(4), 045220-1–10 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.045220
[6] A. Dargys, Semiconductor spintronics: Role of the valence-band
holes, Acta Phys. Pol. A 107(1), 46–55 (2005),
http://dx.doi.org/10.12693/APhysPolA.107.46
[7] A. Dargys, Spin properties of lead chalcogenides in absence of
magnetic field, Phys. Scripta 74(6), 519–524 (2006),
http://dx.doi.org/10.1088/0031-8949/74/5/004
[8] A. Dargys, Precession trajectories of the hole spin in
zinc-blende semiconductors, Solid-State Electron. 51(1),
93–100 (2007),
http://dx.doi.org/10.1016/j.sse.2006.11.009
[9] A. Dargys, Spin and orbital motion surfaces in HgTe, Semicond.
Sci. Technol. 22(5), 497–501 (2007),
http://dx.doi.org/10.1088/0268-1242/22/5/007
[10] R. Winkler, Rashba spin splitting in two-dimensional electron
and hole systems, Phys. Rev. B 62(7), 4245–4248 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.4245
[11] C.P. Slichter, Principles of Magnetic Resonance
(Springer-Verlag, Berlin–Heidelberg–New York, 1980)
[12] A. Dargys, Free-electron spin surfaces in 3D and 2D zinc-blende
semiconductors, Phys. Status Solidi B 243(8), R54–R56
(2006),
http://dx.doi.org/10.1002/pssb.200642136
[13] I. Žutić, J. Fabian, and S.D. Sarma, Spintronics: Fundamentals
and applications, Rev. Mod. Phys. 76(2), 323–410 (2004),
http://dx.doi.org/10.1103/RevModPhys.76.323
[14] F. Meier and B.P. Zakharchenya, Optical Orientation
(North-Holland, Amsterdam–New York–Tokyo, 1984)
[15] T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A.H.
MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors, Rev.
Mod. Phys. 78(3), 809–864 (2006),
http://dx.doi.org/10.1103/RevModPhys.78.809
[16] R.H. Silsbee, Spin–orbit induced coupling of charge current and
spin polarization (review), J. Phys. Cond. Matter 16(7),
R179–R207 (2004),
http://dx.doi.org/10.1088/0953-8984/16/7/R02
[17] M.G. Pala, M. Governale, J. Konig, U. Zulicke, and G.
Iannaccone, Two-dimensional hole precession in all-semiconductor
spin field effect transistor, Phys. Rev. B 69(4), 045304-1–9
(2004),
http://dx.doi.org/10.1103/PhysRevB.69.045304
[18] D. Sprinzak, M. Heiblum, Y. Levinson, and H. Shtrikman,
Ballistic transport of holes and phonon replicas in lightly doped
GaAs, Phys. Rev. B 55(16), R10185–R10187 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R10185
[19] P.H. Song and K.W. Kim, Spin relaxation of conduction electrons
in bulk III-V semiconductors, Phys. Rev. B, 66(3),
035207-1–8 (2002),
http://dx.doi.org/10.1103/PhysRevB.66.035207
[20] D.J. Hilton and C.L. Tang, Optical orientation and femtosecond
relaxation of spin-polarized holes in GaAs, Phys. Rev. Lett. 89(14)
146601-1–4 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.146601
[21] S. Bandyopadhaya and M. Cahay, Reexamination of some spintronic
field-effect device concept, Appl. Phys. Lett. 85(8),
1433–1435 (2004),
http://dx.doi.org/10.1063/1.1784042
[22] V.M. Ramaglia, D. Bercioux, V. Cataudella, G. DeFilippis, and
C.A. Perroni, Spin polarization of electrons with Rashba
double-refraction, J. Phys. Cond. Matter 16(50), 9143–9154
(2004),
http://dx.doi.org/10.1088/0953-8984/16/50/005
[23] D. Bercioux and V. Marigliano Ramaglia, The spin-double
refraction in two-dimensional electron gas, arXiv:cond-mat/0502456,
1–4 (2005),
http://dx.doi.org/10.1016/j.spmi.2004.12.009
[24] J. Schliemann, J.C. Egues, and D. Loss, Nonballistic
spin-field-effect transistor, Phys. Rev. Lett 90(14),
146801-1–4 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.146801
[25] K.M. Jiang, Z.M. Zheng, B. Wang, and D.Y. Xing, Switching
effect in spin field-effect transistors, Appl. Phys. Lett. 89(1),
012105-1–3 (2006),
http://dx.doi.org/10.1063/1.2219742
[26] J.M. Luttinger and W. Kohn, Motion of electrons and holes in
perturbed periodic fields, Phys. Rev. 97(4), 869–883 (1955),
http://dx.doi.org/10.1103/PhysRev.97.869
[27] E.P. O'Reilly, Valence band engineering in strained-layer
structures, Semicond. Sci. Technol. 4(3), 121–137 (1989),
http://dx.doi.org/10.1088/0268-1242/4/3/001