[PDF]    http://dx.doi.org/10.3952/lithjphys.47202

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 185–194 (2007)


WHY THE SPIN-FET DOES NOT WORK?*
A. Dargys
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: dargys@pfi.lt

Received 21 March 2007

The spin-FET (spin field effect transistor) is the spintronics device the operation of which is based on unique properties of free electron or hole spin in semiconductors. In the spin-FET, the modulation of channel conductance is achieved by control of spin direction via the spin–orbit interaction. The present article, firstly, critically reviews the main difficulties encountered in realizing the spin-FET. Secondly, using the concept of the spin surface, general spin properties of 2D holes in p-type channel of the FET are considered. The complex nature of the spin surfaces of the ballistic 2D holes is demonstrated. It is shown that in optimizing the spin-FET, in addition to the dispersion law of the channel one should pay a special attention on how the spin surface transforms between spin injector and collector.
Keywords: spintronics, spin-FET, hole spin, spin–orbit interaction, quantum well
PACS: 71.70.Ej, 75.10.Dg, 85.30.Tv
*The report presented at the 37th Lithuanian National Physics Conference, 11–13 June 2007, Vilnius, Lithuania.


KODĖL NEVEIKIA SUKINIO TRANZISTORIUS?
A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Sukinio tranzistorius yra vienas iš spintronikos prietaisų, pasiūlytas dar 1990 m., kurio veikimas grindžiamas unikaliomis laisvojo elektrono ir skylės sukinio savybėmis puslaidininkiuose. Tokiame tranzistoriuje elektrinio laidumo moduliacija, panašiai kaip optiniame poliarizaciniame moduliatoriuje, valdoma elektriniu lauku, pakeičiant elektrono sukinio poliarizaciją. Ryšys tarp elektrinio lauko ir sukinio sukuriamas per sukinio ir orbitos sąveiką. Deja, iki šiol nepavyko pagaminti veikiančio sukinio tranzistoriaus, nors moduliacijos galimybės buvo pademonstruotos. Pranešime trumpai apžvelgtas tokio tranzistoriaus veikimo principas, pagrindiniai parametrai, lemiantys jo veikimą, ir sunkumai, su kuriais susiduriama, bandant pagaminti tranzistorių. Ypatingas dėmesys kreipiamas į dvimatės protakos sukinio savybes, tam pasitelkiant autoriaus pasiūlytą sukinio paviršiaus koncepciją. Parodyta, kaip sukinio paviršiaus pavidalas priklauso nuo protakos energinio spektro ir balistinės skylės greičio protakoje. Taip pat parodyta, kaip galima pasinaudoti sukinio paviršiais, optimizuojant sukinio injekciją iš feromagnetiko į dvimatę protaką.


References / Nuorodos


[1] S. Datta and B. Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56(2), 665–667 (1990),
http://dx.doi.org/10.1063/1.102730
[2] Y.A. Bychkov and E.I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C 17(33), 6039–6045 (1984),
http://dx.doi.org/10.1088/0022-3719/17/33/015
[3] R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer-Verlag, Berlin–Heidelberg–New York, 2003),
http://dx.doi.org/10.1007/b13586
[4] A. Dargys, Hole spin surfaces in A3B5 semiconductors, Phys. Status Solidi B 241(13), 2954–2961 (2004),
http://dx.doi.org/10.1002/pssb.200402078
[5] A. Dargys, Spin of valence-band holes in wurtzite semiconductors, Phys. Rev. B 72(4), 045220-1–10 (2005),
http://dx.doi.org/10.1103/PhysRevB.72.045220
[6] A. Dargys, Semiconductor spintronics: Role of the valence-band holes, Acta Phys. Pol. A 107(1), 46–55 (2005),
http://dx.doi.org/10.12693/APhysPolA.107.46
[7] A. Dargys, Spin properties of lead chalcogenides in absence of magnetic field, Phys. Scripta 74(6), 519–524 (2006),
http://dx.doi.org/10.1088/0031-8949/74/5/004
[8] A. Dargys, Precession trajectories of the hole spin in zinc-blende semiconductors, Solid-State Electron. 51(1), 93–100 (2007),
http://dx.doi.org/10.1016/j.sse.2006.11.009
[9] A. Dargys, Spin and orbital motion surfaces in HgTe, Semicond. Sci. Technol. 22(5), 497–501 (2007),
http://dx.doi.org/10.1088/0268-1242/22/5/007
[10] R. Winkler, Rashba spin splitting in two-dimensional electron and hole systems, Phys. Rev. B 62(7), 4245–4248 (2000),
http://dx.doi.org/10.1103/PhysRevB.62.4245
[11] C.P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin–Heidelberg–New York, 1980)
[12] A. Dargys, Free-electron spin surfaces in 3D and 2D zinc-blende semiconductors, Phys. Status Solidi B 243(8), R54–R56 (2006),
http://dx.doi.org/10.1002/pssb.200642136
[13] I. Žutić, J. Fabian, and S.D. Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323–410 (2004),
http://dx.doi.org/10.1103/RevModPhys.76.323
[14] F. Meier and B.P. Zakharchenya, Optical Orientation (North-Holland, Amsterdam–New York–Tokyo, 1984)
[15] T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A.H. MacDonald, Theory of ferromagnetic (III,Mn)V semiconductors, Rev. Mod. Phys. 78(3), 809–864 (2006),
http://dx.doi.org/10.1103/RevModPhys.78.809
[16] R.H. Silsbee, Spin–orbit induced coupling of charge current and spin polarization (review), J. Phys. Cond. Matter 16(7), R179–R207 (2004),
http://dx.doi.org/10.1088/0953-8984/16/7/R02
[17] M.G. Pala, M. Governale, J. Konig, U. Zulicke, and G. Iannaccone, Two-dimensional hole precession in all-semiconductor spin field effect transistor, Phys. Rev. B 69(4), 045304-1–9 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.045304
[18] D. Sprinzak, M. Heiblum, Y. Levinson, and H. Shtrikman, Ballistic transport of holes and phonon replicas in lightly doped GaAs, Phys. Rev. B 55(16), R10185–R10187 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R10185
[19] P.H. Song and K.W. Kim, Spin relaxation of conduction electrons in bulk III-V semiconductors, Phys. Rev. B, 66(3), 035207-1–8 (2002),
http://dx.doi.org/10.1103/PhysRevB.66.035207
[20] D.J. Hilton and C.L. Tang, Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs, Phys. Rev. Lett. 89(14) 146601-1–4 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.146601
[21] S. Bandyopadhaya and M. Cahay, Reexamination of some spintronic field-effect device concept, Appl. Phys. Lett. 85(8), 1433–1435 (2004),
http://dx.doi.org/10.1063/1.1784042
[22] V.M. Ramaglia, D. Bercioux, V. Cataudella, G. DeFilippis, and C.A. Perroni, Spin polarization of electrons with Rashba double-refraction, J. Phys. Cond. Matter 16(50), 9143–9154 (2004),
http://dx.doi.org/10.1088/0953-8984/16/50/005
[23] D. Bercioux and V. Marigliano Ramaglia, The spin-double refraction in two-dimensional electron gas, arXiv:cond-mat/0502456, 1–4 (2005),
http://dx.doi.org/10.1016/j.spmi.2004.12.009
[24] J. Schliemann, J.C. Egues, and D. Loss, Nonballistic spin-field-effect transistor, Phys. Rev. Lett 90(14), 146801-1–4 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.146801
[25] K.M. Jiang, Z.M. Zheng, B. Wang, and D.Y. Xing, Switching effect in spin field-effect transistors, Appl. Phys. Lett. 89(1), 012105-1–3 (2006),
http://dx.doi.org/10.1063/1.2219742
[26] J.M. Luttinger and W. Kohn, Motion of electrons and holes in perturbed periodic fields, Phys. Rev. 97(4), 869–883 (1955),
http://dx.doi.org/10.1103/PhysRev.97.869
[27] E.P. O'Reilly, Valence band engineering in strained-layer structures, Semicond. Sci. Technol. 4(3), 121–137 (1989),
http://dx.doi.org/10.1088/0268-1242/4/3/001