[PDF]
http://dx.doi.org/10.3952/lithjphys.47204
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 123–128 (2007)
METAL STATE ALTERATION IN Fe
PHTHALOCYANINE
A. Amulevičius, V. Remeikis, and A. Undzėnas
Institute of Physics, Savanorių 231, LT-02300 Vilnius,
Lithuania
E-mail: antanas@ar.fi.lt
Received 28 February 2007; revised
10 May 2007
57Fe isotope-enriched
iron phthalocyanine has been synthesized and studied by the
Mössbauer spectroscopy in the temperature range 100–350 K. The
intermediate Fe oxidation states have been observed and it has
been found that the rate of charge redistribution is
temperature-dependent. The correlation between the temperature
behaviour of the isomeric shift and quadrupole splitting has been
demonstrated. The Fe oxidation states are associated with
fluctuations of electron charges, electron-accepting and
electron-donating properties of surrounding ligands. The energy
barriers separating Fe oxidation states have been determined.
Keywords: Mössbauer spectroscopy,
isomeric shift, quadrupole splitting, iron phthalocyanine, Fe
oxidation states
PACS: 33.45.+x, 34.50.Gb, 32.10.Fn
METALO BŪSENOS KAITA Fe
FTALOCIANINE
A. Amulevičius, V. Remeikis, A. Undzėnas
Fizikos institutas, Vilnius, Lietuva
Susintetintas 57Fe izotopu
praturtintas geležies ftalocianinas ir tirtas Mesbauerio
spektroskopijos metodu 100–350 K temperatūros intervale. Buvo
stebimos tarpinės Fe oksidacijos būsenos ir nustatyta, kad krūvio
persiskirstymo sparta priklauso nuo temperatūros. Parodytas
sąryšis tarp izomerinio poslinkio temperatūrinės elgsenos ir
kvadrupolinio suskilimo. Fe oksidacijos laipsnis siejamas su
elektrono krūvio fliuktuacijomis bei ligandų gebėjimu priimti ir
atiduoti elektronus. Įvertinti Fe oksidacijos būsenas skiriantys
energijos barjerai.
References / Nuorodos
[1] G. de la Torre, P. Vazquez, F. Agullo-Lopez, and T. Torres,
Phthalocyanines and related compounds: Organic targets for nonlinear
optical applications, J. Mater. Chem. 8, 1671–1683 (1998),
http://dx.doi.org/10.1039/a803533d
[2] Y. Shirota, Organic materials for electronic and optoelectronic
devices, J. Mater. Chem. 10, 1–25 (2000),
http://dx.doi.org/10.1039/a908130e
[3] H. Wachtel, J.J. Andre, W. Bietsch, and J.U. von Schütz, Spin
dynamics in oriented lithium phthalocyanine thin films investigated
by pulsed electron spin resonance, J. Chem. Phys. 102,
5088–5093 (1995),
http://dx.doi.org/10.1063/1.469559
[4] M. Tian, T. Wada, H. Kimura-Suda, and H. Sasabe, Novel
non-aggregated unsymmetrical metallphthalocyanines for second-order
nonlinear optics, J. Mater. Chem. 7, 861–863 (1997),
http://dx.doi.org/10.1039/a701606i
[5] R. Göbl, A. Zentko, J. Kováč, K. Csach, M. Zentková, and M.
Maryško, Magnetic properties of uranium ferrocyanides and
ferricyanides, Czech. J. Phys. 50, 671–676 (2000),
http://dx.doi.org/10.1023/A:1022818704161
[6] M. Evangelisti, J. Bartolome, L.J. de Jongh, and G. Filoti,
Magnetic properties of -iron (II) phthalocyanine, Phys. Rev. B 60,
144410-1–11 (2002),
http://dx.doi.org/10.1103/physrevb.66.144410
[7] V. Gulbinas, Transient absorption of photoexcited
titanylphthalocyanine in various molecular arrangements, Chem. Phys.
261, 469–479 (2000),
http://dx.doi.org/10.1016/S0301-0104(00)00234-2
[8] E. Kuzmann, A. Nath, V. Chechersky et al., Mössbauer study of
oxygenated iron-phthalocyanines, a precursor of magnetic storage
material, Hyp. Interact. 139/140, 631–639 (2002),
http://dx.doi.org/10.1023/A:1021291316033
[9] K. Gonzalez, R. Iraldi, and F. Gonzalez-Jimenez, Mössbauer study
of factors in iron carbonitrides. Hyp. Interact. 28, 619–622
(1986),
http://dx.doi.org/10.1007/BF02061524
[10] Mössbauer Spectroscopy, eds. P.E. Dickson and F.J.
Berry (Cambridge University Press, Cambridge, 1986)
[11] I.P. Suzdalev, Gamma-Resonance Spectroscopy of Proteins and
Model Compounds (Moscow, Nauka, 1988) [in Russian]
[12] V.M. Derkatcheva, N.I. Budina, N.G. Meshriakova et al., New
method of preparing iron phthalocyanine, Zh. Neorg. Khim. [J. Inorg.
Chem. (USSR)] 26, 1687–1690 (1981)
[13] F. van der Woude and K.W. Maring, in: The Electronic and
Magnetic Properties of Iron sp Element Alloys, Proceedings of
International Conference on Mössbauer Spectroscopy (Bucharest,
1977) pp. 1132–1161
[14] A.R. Miedema and P.T. de Chatel, Theory of Alloy Phase
Formation, ed. L.H. Bennet (Met. soc. AIME, Ohio, 1979)
[15] Ch.P. Slichter, Principles of Magnetic Resonance (Mir,
Moscow, 1967) [in Russian]
[16] H. Inoue, Y. Matsubayashi, T. Shirai, and E. Fluck, Mössbauer
spectroscopic characterization of iron chlorophyllins, Hyp.
Interact. 29, 1403–1406 (1986),
http://dx.doi.org/10.1007/BF02399496