[PDF]    http://dx.doi.org/10.3952/lithjphys.47204

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 123–128 (2007)


METAL STATE ALTERATION IN Fe PHTHALOCYANINE
A. Amulevičius, V. Remeikis, and A. Undzėnas
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: antanas@ar.fi.lt

Received 28 February 2007; revised 10 May 2007

57Fe isotope-enriched iron phthalocyanine has been synthesized and studied by the Mössbauer spectroscopy in the temperature range 100–350 K. The intermediate Fe oxidation states have been observed and it has been found that the rate of charge redistribution is temperature-dependent. The correlation between the temperature behaviour of the isomeric shift and quadrupole splitting has been demonstrated. The Fe oxidation states are associated with fluctuations of electron charges, electron-accepting and electron-donating properties of surrounding ligands. The energy barriers separating Fe oxidation states have been determined.
Keywords: Mössbauer spectroscopy, isomeric shift, quadrupole splitting, iron phthalocyanine, Fe oxidation states
PACS: 33.45.+x, 34.50.Gb, 32.10.Fn


METALO BŪSENOS KAITA Fe FTALOCIANINE
A. Amulevičius, V. Remeikis, A. Undzėnas
Fizikos institutas, Vilnius, Lietuva

Susintetintas 57Fe izotopu praturtintas geležies ftalocianinas ir tirtas Mesbauerio spektroskopijos metodu 100–350 K temperatūros intervale. Buvo stebimos tarpinės Fe oksidacijos būsenos ir nustatyta, kad krūvio persiskirstymo sparta priklauso nuo temperatūros. Parodytas sąryšis tarp izomerinio poslinkio temperatūrinės elgsenos ir kvadrupolinio suskilimo. Fe oksidacijos laipsnis siejamas su elektrono krūvio fliuktuacijomis bei ligandų gebėjimu priimti ir atiduoti elektronus. Įvertinti Fe oksidacijos būsenas skiriantys energijos barjerai.


References / Nuorodos


[1] G. de la Torre, P. Vazquez, F. Agullo-Lopez, and T. Torres, Phthalocyanines and related compounds: Organic targets for nonlinear optical applications, J. Mater. Chem. 8, 1671–1683 (1998),
http://dx.doi.org/10.1039/a803533d
[2] Y. Shirota, Organic materials for electronic and optoelectronic devices, J. Mater. Chem. 10, 1–25 (2000),
http://dx.doi.org/10.1039/a908130e
[3] H. Wachtel, J.J. Andre, W. Bietsch, and J.U. von Schütz, Spin dynamics in oriented lithium phthalocyanine thin films investigated by pulsed electron spin resonance, J. Chem. Phys. 102, 5088–5093 (1995),
http://dx.doi.org/10.1063/1.469559
[4] M. Tian, T. Wada, H. Kimura-Suda, and H. Sasabe, Novel non-aggregated unsymmetrical metallphthalocyanines for second-order nonlinear optics, J. Mater. Chem. 7, 861–863 (1997),
http://dx.doi.org/10.1039/a701606i
[5] R. Göbl, A. Zentko, J. Kováč, K. Csach, M. Zentková, and M. Maryško, Magnetic properties of uranium ferrocyanides and ferricyanides, Czech. J. Phys. 50, 671–676 (2000),
http://dx.doi.org/10.1023/A:1022818704161
[6] M. Evangelisti, J. Bartolome, L.J. de Jongh, and G. Filoti, Magnetic properties of -iron (II) phthalocyanine, Phys. Rev. B 60, 144410-1–11 (2002),
http://dx.doi.org/10.1103/physrevb.66.144410
[7] V. Gulbinas, Transient absorption of photoexcited titanylphthalocyanine in various molecular arrangements, Chem. Phys. 261, 469–479 (2000),
http://dx.doi.org/10.1016/S0301-0104(00)00234-2
[8] E. Kuzmann, A. Nath, V. Chechersky et al., Mössbauer study of oxygenated iron-phthalocyanines, a precursor of magnetic storage material, Hyp. Interact. 139/140, 631–639 (2002),
http://dx.doi.org/10.1023/A:1021291316033
[9] K. Gonzalez, R. Iraldi, and F. Gonzalez-Jimenez, Mössbauer study of factors in iron carbonitrides. Hyp. Interact. 28, 619–622 (1986),
http://dx.doi.org/10.1007/BF02061524
[10] Mössbauer Spectroscopy, eds. P.E. Dickson and F.J. Berry (Cambridge University Press, Cambridge, 1986)
[11] I.P. Suzdalev, Gamma-Resonance Spectroscopy of Proteins and Model Compounds (Moscow, Nauka, 1988) [in Russian]
[12] V.M. Derkatcheva, N.I. Budina, N.G. Meshriakova et al., New method of preparing iron phthalocyanine, Zh. Neorg. Khim. [J. Inorg. Chem. (USSR)] 26, 1687–1690 (1981)
[13] F. van der Woude and K.W. Maring, in: The Electronic and Magnetic Properties of Iron sp Element Alloys, Proceedings of International Conference on Mössbauer Spectroscopy (Bucharest, 1977) pp. 1132–1161
[14] A.R. Miedema and P.T. de Chatel, Theory of Alloy Phase Formation, ed. L.H. Bennet (Met. soc. AIME, Ohio, 1979)
[15] Ch.P. Slichter, Principles of Magnetic Resonance (Mir, Moscow, 1967) [in Russian]
[16] H. Inoue, Y. Matsubayashi, T. Shirai, and E. Fluck, Mössbauer spectroscopic characterization of iron chlorophyllins, Hyp. Interact. 29, 1403–1406 (1986),
http://dx.doi.org/10.1007/BF02399496