[PDF]
http://dx.doi.org/10.3952/lithjphys.47206
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 221–228 (2007)
CLEANING OF CONTAMINATED PAPER
WITH THE SUBNANOSECOND Nd : YAG LASER PULSES
V. Švedas, A.S. Dement’ev, E. Murauskas, and N. Slavinskis
Laboratory of Nonlinear Optics and Spectroscopy, Institute of
Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: svedas@ktl.mii.lt
Received 20 April 2007; revised 18
May 2007
Laser cleaning and restoration of
documents on the paper base offer advantages over traditional
mechanical and chemical cleaning methods. In this work, the
office-type paper artificially contaminated for research purposes
was cleaned with subnanosecond laser pulses. Laser cleaning
recovered more than 80% of the paper initial brightness observed
in the visible range, whereas chemical modifications of the paper
studied by the FTIR spectrometer were below the spectrometric
noise level. The laser fluences above the optical breakdown
threshold of the paper surface resulted in the uplift of the paper
surface and thinning-out of cellulose fibres in the breakdown
zone. This type of morphological modification is accompanied by
the FTIR detected compositional changes of the substrate – the
intensity of three CaCO3 infrared peaks decreases after laser
treatment.
Keywords: paper, laser cleaning, Fourier
Transform Infrared (FTIR) spectroscopy, photoacoustic spectroscopy
PACS: 82.80.Gk, 82.80.Kq
UŽTERŠTO POPIERIAUS VALYMAS
SUBNANOSEKUNDINIAIS Nd : YAG LAZERIO IMPULSAIS
V. Švedas, A.S. Dementjev, E. Murauskas, N. Slavinskis
Fizikos institutas, Vilnius, Lietuva
Tirtas anglies milteliais užteršto rašomojo
popieriaus valymas aktyvios kokybės moduliacijos Nd : YAG lazeriu
su priverstinės Brijueno sklaidos impulsų spūda (0,15 ns impulso
trukmė ir >10 mJ energija). Valant popierių nefokusuota
spinduliuote (impulso energijos tankis ~0,1 J/cm2),
valymo būdas yra švelnus. Šiuo būdu nuvaloma anglis ir lazerio
spinduliuote atstatoma daugiau nei 80 % popieriaus pirminio
baltumo. Švelnų valymą lydintys cheminiai popieriaus pokyčiai yra
žemiau FTIR spektroskopijos aptikimo ribos. Veikiant popierių
fokusuota spinduliuote (impulso energijos tankis ~5 J/cm2),
gaunamas stiprus poveikis, kuris sukelia popieriaus paviršiaus
pakilimą ir celiuliozės skaidulų išretėjimą. FTIR pralaidos,
atspindžio bei fotoakustiniams matavimams paruošiamas ~1 cm2
popierius plotas, atliekant kompiuteriu valdomą X–Y
skenavimą. Stipraus poveikio sukelti morfologiniai popieriaus
pakitimai yra lydimi cheminių pokyčių. Skaidulų išretėjimą lydi
CaCO3 spektrinių smailių ties 1793 ir 874 cm–1
bei 2514 cm–1 juostos intensyvumų sumažėjimas, kurį
galima paaiškinti kalcio karbonato koncentracijos sumažėjimu.
1650–1627 cm–1 intervalo spektrinių juostų intensyvumų
kitimai siejami su popieriuje adsorbuoto vandens kiekiu.
Fotoakustinė spektroskopija leidžia atlikti cheminės sudėties
spektrinę analizę, įskaitant pasiskirstymą bandinio gylyje.
Stipraus lazerio poveikio sukelti sandaros pokyčiai suteikia
popieriui savybių, palankių fotoakustinei spektroskopijai –
signalas padidėja nuo 3 iki 10 kartų, pagerėja modifikuoto
popieriaus atsparumas fotoakustinio signalo įsisotinimo
reiškiniui.
References / Nuorodos
[1] M. Alava and K. Niskanen, The physics of paper, Rep. Prog. Phys.
69, 669–723 (2006),
http://dx.doi.org/10.1088/0034-4885/69/3/R03
[2] W. Kautek, S. Pentzien, P. Rudolph, J. Krüger, and E. König,
Laser interaction with coated collagen and cellulose fibre
composites: Fundamentals of laser cleaning of ancient parchment
manuscripts and paper, Appl. Surf. Sci. 127–129, 746–754
(1998),
http://dx.doi.org/10.1016/S0169-4332(97)00735-6
[3] J. Kolar, M. Strlič, S. Pentzien, and W. Kautek, Near-UV,
visible and IR pulsed laser light interaction with cellulose, Appl.
Phys. A 71, 87–90 (2000),
http://dx.doi.org/10.1007/PL00021097
[4] J. Kolar, M. Strlič, and M. Marinček, IR pulsed laser light
interaction with soiled cellulose and paper, Appl. Phys. A 75,
673–676 (2002),
http://dx.doi.org/10.1007/s003390201309
[5] K. Ochocińska, A. Kamińska, and G. Śliwiński, Experimental
investigation of stained paper documents cleaned by the Nd: YAG
laser pulses, J. Cult. Heritage 4, 188s–193s (2003),
http://dx.doi.org/10.1016/S1296-2074(02)01197-4
[6] C. Pérez, M. Barrera, and L. Díez, Positive findings for laser
use in cleaning cellulosic supports, J. Cult. Heritage 4,
194s–200s (2003),
http://dx.doi.org/10.1016/S1296-2074(02)01198-6
[7] P. Rudolph, F.J. Pedersoli JR, H. Scholten, D. Schipper,
J.B.G.A. Havermans, H.A. Aziz, V. Quillet, M. Kraan, B. Van Beek, S.
Corr, H.-Y. Hua-Ströfer, J. Stokman, P. Van Dalen, and W. Kautek,
Laser-induced alteration of contaminated papers, Appl. Phys. A 79,
941–944 (2004),
http://dx.doi.org/10.1007/s00339-004-2574-5
[8] M. Strlič, V.S. Šelf, J. Kolar, D. Kočar, B. Pihlar, R.
Ostrowski, J. Marczak, M. Strzelec, M. Marinček, T. Vuorinen, and
L.S. Johansson, Optimization and online acoustic monitoring of laser
cleaning of soiled paper, Appl. Phys. A 81, 943–951 (2005),
http://dx.doi.org/10.1007/s00339-005-3268-3
[9] Lasers in the Conservation of Artworks. LACONA V
Proceedings, Osnabruck, Germany, September 15–18, 2003, eds:
K. Dickmann, C. Fotakis, and J.F. Asmus (Springer-Verlag,
Berlin–Heidelberg, 2005)
[10] P. Pregowski, J. Marczak, and A. Koss, Thermal effects on
artwork surfaces cleaned with laser ablation method, Proc. SPIE 5146,
226–235 (2003),
http://dx.doi.org/10.1117/12.500118
[11] A. Koss and J. Marczak, Application of Lasers in
Conservation of Monuments and Works of Art (Warsaw, 2005)
[12] M. Bicchieri, S. Ronconi, F.P. Romano, L. Pappalardo, M. Corsi,
G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E.
Tognoni, Study of foxing stains on paper by chemical methods,
infrared spectroscopy, micro-X-ray fluorescence spectrometry and
laser induced breakdown spectroscopy, Spectrochim. Acta B 57,
1235–1249 (2002),
http://dx.doi.org/10.1016/S0584-8547(02)00056-3
[13] G. Bitossi, R. Giorgi, M. Mauro, B. Salvadori, and L. Dei,
Spectroscopic techniques in cultural heritage conservation: A
survey, Appl. Spectrosc. Rev. 40, 187–228 (2005),
http://dx.doi.org/10.1081/ASR-200054370
[14] J.F. McClelland, R.W. Jones, and S.J. Bajic, in: Handbook
of Vibrational Spectroscopy, vol. 2, eds. J.M. Chalmers and
P.R. Griffiths (John Wiley & Sons, Chichester, 2002) pp.
1231–1251
[15] K.H. Michaelian, Photoacoustic Infrared Spectroscopy
(John Wiley & Sons, New Jersey, 2003),
http://dx.doi.org/10.1002/0471721190
[16] J. Łojewska, P. Miśkowiec, T. Łojewski, and L.M. Proniewicz,
Cellulose oxidative and hydrolytic degradation: In situ FTIR
approach, Polymer Degr. Stab. 88, 512–520 (2005),
http://dx.doi.org/10.1016/j.polymdegradstab.2004.12.012
[17] J. Łojewska, A. Lubańska, P. Miśkowiec, T. Łojewski, and L.M.
Proniewicz, FTIR in situ transmission studies on the kinetic of
paper degradation via hydrolytic and oxidative reaction paths, Appl.
Phys. A 83, 597–603 (2006),
http://dx.doi.org/10.1007/s00339-006-3529-9
[18] L. Jacinavičius, A. Michailovas, and E. Murauskas, Generator of
short laser pulses, Patent of Republic of Lithuania, LT 5168 B
(2004) [in Lithuanian]
[19] A. Dement'ev, R. Buzelis, E. Kosenko, E. Murauskas, and R.
Navakas, Solid-state lasers with pulse compression by transient
stimulated Brillouin and Raman scattering, Proc. SPIE 4415,
92–97 (2001),
http://dx.doi.org/10.1117/12.425476
[20] A.C. Tam, Applications of photoacoustic sensing techniques,
Rev. Mod. Phys. 58, 381–427 (1986),
http://dx.doi.org/10.1103/RevModPhys.58.381
[21] E. Martin, The role of thermal properties in periodic
time-varying phenomena, Eur. J. Phys. 28, 429–445 (2007),
http://dx.doi.org/10.1088/0143-0807/28/3/005
[22] J. Coates, in: Encyclopedia of Analytical Chemistry,
ed. R.A. Meyers (John Wiley & Sons Ltd, Chichester, 2000) pp.
10815–10837
[23] NIST Chemistry WebBook. Calcium carbonate (precipitated),
http://webbook.nist.gov/chemistry/,
http://dx.doi.org/10.18434/T4D303
[24] J.M. Olinger, P.R. Griffiths, and T. Burger, in: Handbook of
Near-Infrared Analysis, eds. D.A. Burns and E.W. Ciurczak (Marcel
Dekker, New York, 2001) pp. 19–51
[25] P. Geladi, D. MacDougall, and H. Martens, Linearization and
scatter-correction for near-infrared reflectance spectra of meat,
Appl. Spectrosc. 39, 491–500 (1985),
http://dx.doi.org/10.1366/0003702854248656
[26] T. Isaksson and T. Naes, The effect of multiplicative scatter
correction (MSC) and linearity improvement in NIR spectroscopy,
Appl. Spectrosc. 42, 1273–84 (1988),
http://dx.doi.org/10.1366/0003702884429869