[PDF]    http://dx.doi.org/10.3952/lithjphys.47208

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 211–219 (2007)


ANALYSIS OF IODINE RELEASE FROM THE DEFECTIVE FUEL ELEMENTS OF THE RBMK-1500 REACTOR
G. Klevinskas, L. Juodis, R. Plukienė, A. Plukis, and V. Remeikis
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: jugintas@gmail.com

Received 27 April 2007; revised 25 May 2007

The results of modelling and analysis of iodine release to the main circulation circuit of the RBMK-1500 reactor are presented. General approach proposed by Lewis and Husain for the CANDU reactor primary coolant activity prediction was applied. Specific features of the RBMK-1500 coolant activity measurement were assessed. Non-stationary activity measurement conditions were identified and quantified with corresponding correction factors. Parameter values of the adapted model are comparable with those characteristic of CANDU reactor defective fuel.
Keywords: nuclear fuel, fission products, diffusion, radionuclide release mechanisms, iodine
PACS: 28.41.Kw, 83.80.-k


JODO IŠLAKŲ IŠ PAŽEISTŲ RBMK-1500 REAKTORIAUS KURO ELEMENTŲ ANALIZĖ
G. Klevinskas, L. Juodis, R. Plukienė, A. Plukis, V. Remeikis
Fizikos institutas, Vilnius, Lietuva

Branduolinio reaktoriaus darbo metu urano dioksido kuro tabletėse susidaro dalijimosi produktai (DP), kurie migruoja į tarpelį tarp kuro elemento tablečių ir cirkonio apvalkalo, o per pastarojo defektus patenka į reaktoriaus pagrindinio cirkuliacinio kontūro (PCK) vandenį. Prognozuoti DP sklaidą reaktoriaus kontūre yra svarbu, nes tai leidžia įvertinti avarijų pasekmes bei numatyti ilgalaikį radiacinį poveikį aplinkai ir gyventojams galutinai palaidojus eksploatacijos metu susidariusias DP užterštas radioaktyviąsias atliekas. Atsižvelgus į RBMK-1500 reaktoriaus PCK vandens aktyvumo matavimo specifiką, šiame darbe pateiktas papildytas DP balanso reaktoriaus pagrindiniame cirkuliaciniame kontūre modelis ir įvertintas radionuklidų koncentracijos kuro tarpelyje ir reaktoriaus pagrindiniame cirkuliaciniame kontūre kitimas kuro elemento cirkonio apvalkalo trūkio atveju bei pasiūlytos ir įvertintos atitinkamos radionuklidų koncentracijos pataisos. Išanalizuotas jodo izotopų išsiskyrimas iš kuro RBMK-1500 reaktoriaus atveju. Pateikiami jodo radionuklidų išlakų į RBMK-1500 reaktoriaus pagrindinį cirkuliacinį kontūrą modeliavimo ir analizės rezultatai. Apskaičiuoti jodo izotopų sklaidos RBMK-1500 reaktoriaus kontūre modelio parametrai ir efektinis jodo difuzijos koeficientas D′ RBMK-1500 reaktoriaus branduoliniame kure.


References / Nuorodos


[1] IAEA-TECDOC-1345, Fuel failure in water reactors: Causes and mitigation, in: Proceedings of a Technical Meeting (Bratislava, Slovakia, June 2002)
[2] W. Müller, Activity determination – an overview, in: Determination and Declaration of Nuclide Specific Activity Inventories in Radioactive Wastes, International Workshop (Cologne, Germany, 2001) pp. 1–10
[3] F.C. Iglesias, B.J. Lewis, P.J. Reid, and P. Elder, Fission product release mechanisms during reactor accident conditions, J. Nucl. Mater. 270, 21–38 (1999),
http://dx.doi.org/10.1016/S0022-3115(98)00738-7
[4] B.J. Lewis and A. Husain, Modelling the activity of 129I in the primary coolant of a CANDU reactor, J. Nucl. Mater. 312, 81–96 (2003),
http://dx.doi.org/10.1016/S0022-3115(02)01588-X
[5] V. Remeikis and A. Jurkevicius, Evolution of the neutron sensor characteristics in the RBMK-1500 reactor neutron flux, Nucl. Eng. Des. 231, 271–282 (2004),
http://dx.doi.org/10.1016/j.nucengdes.2004.03.011
[6] K. Almenas, A. Kaliatka, and E. Ušpuras, Ignalina RBMK-1500. A Source Book. Extended and Updated Version (Lithuanian Energy Institute, Kaunas, 1998)
[7] General safety regulations of nuclear power plants during design, construction, and operation (OPB-82), Atomic Energy 54(2), 151–160 (1983) [In Russian]
[8] B.J. Lewis, Fundamental aspects of defective nuclear fuel behaviour and fission product release, J. Nucl. Mater. 160, 201–217 (1988),
http://dx.doi.org/10.1016/0022-3115(88)90049-9
[9] Instructions for Operation of Installation of Bypass Purification of MCC Water of Building 101/1,2 of Units 1, 2, PTO-ED-0912-116V7 (Ignalina NPP, 2004) [in Russian]
[10] P. Lösönen, On the behaviour of intragranular fission gas in UO2 fuel, J. Nucl. Mater. 280, 56–72 (2000),
http://dx.doi.org/10.1016/S0022-3115(00)00028-3
[11] J.A. Turnbull, R.J. White, and C. Wise, The diffusion coefficient for fission gas atoms in uranium dioxide, in: IAEA Technical Committee Meeting on Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions, Preston, England (1988)
[12] J.A. Turnbull, C.A. Friskney, J.R. Findlay, F.A. Johnson, and A.J. Water, The diffusion coefficient of gaseous and volatile species during the irradiation of uranium dioxide, J. Nucl. Mater. 107, 168–184 (1982),
http://dx.doi.org/10.1016/0022-3115(82)90419-6
[13] H.J. Matzke, Gas release mechanisms in UO2 – a critical review, Rad. Effects 53, 219–242 (1980),
http://dx.doi.org/10.1080/00337578008207118
[14] B.J. Lewis, R.D. MacDonald, and H.W. Bonin, Release of iodine and noble gas fission products from defected fuel elements during reactor shutdown and start-up, Nucl. Technol. 92, 315–324 (1990),
http://www.ans.org/pubs/journals/nt/a_16234
[15] B.J. Lewis, Fission product release from nuclear fuel by recoil and knockout, J. Nucl. Mater. 148, 28–42 (1987),
http://dx.doi.org/10.1016/0022-3115(87)90515-0
[16] C. Wise, Recoil release of fission products from nuclear fuel, J. Nucl. Mater. 136, 30–47 (1985),
http://dx.doi.org/10.1016/0022-3115(85)90028-5
[17] Monitoring Schedule for Ensuring the Radiation Protection and Safety at Ignalina NPP for 2006, PTO–ED-0515-2B7 (Ignalina NPP, 2005) [in Russian]
[18] Instructions for Carrying out Radiometric and Dosimetric Measurements at Ignalina NPP, PTO-ED-0512-5B8 (Ignalina NPP, 2002) [in Russian]
[19] A Set of Methodics to be Used for Measurements of Radionuclide Composition in Technological Media, PTOED-0528-1B3 (Ignalina NPP, 2005) [in Russian]
[20] B.J. Lewis, C.E.L. Hunt, and F.C. Iglesias, Source term of iodine and noble gas fission products in the fuel-to-sheath gap of intact operating nuclear fuel elements, J. Nucl. Mater. 172, 197–205 (1990),
http://dx.doi.org/10.1016/0022-3115(90)90438-S