[PDF]
http://dx.doi.org/10.3952/lithjphys.47208
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 211–219 (2007)
ANALYSIS OF IODINE RELEASE FROM
THE DEFECTIVE FUEL ELEMENTS OF THE RBMK-1500 REACTOR
G. Klevinskas, L. Juodis, R. Plukienė, A. Plukis, and V. Remeikis
Institute of Physics, Savanorių 231, LT-02300 Vilnius,
Lithuania
E-mail: jugintas@gmail.com
Received 27 April 2007; revised 25
May 2007
The results of modelling and
analysis of iodine release to the main circulation circuit of the
RBMK-1500 reactor are presented. General approach proposed by
Lewis and Husain for the CANDU reactor primary coolant activity
prediction was applied. Specific features of the RBMK-1500 coolant
activity measurement were assessed. Non-stationary activity
measurement conditions were identified and quantified with
corresponding correction factors. Parameter values of the adapted
model are comparable with those characteristic of CANDU reactor
defective fuel.
Keywords: nuclear fuel, fission
products, diffusion, radionuclide release mechanisms, iodine
PACS: 28.41.Kw, 83.80.-k
JODO IŠLAKŲ IŠ PAŽEISTŲ
RBMK-1500 REAKTORIAUS KURO ELEMENTŲ ANALIZĖ
G. Klevinskas, L. Juodis, R. Plukienė, A. Plukis, V. Remeikis
Fizikos institutas, Vilnius, Lietuva
Branduolinio reaktoriaus darbo metu urano
dioksido kuro tabletėse susidaro dalijimosi produktai (DP), kurie
migruoja į tarpelį tarp kuro elemento tablečių ir cirkonio
apvalkalo, o per pastarojo defektus patenka į reaktoriaus
pagrindinio cirkuliacinio kontūro (PCK) vandenį. Prognozuoti DP
sklaidą reaktoriaus kontūre yra svarbu, nes tai leidžia įvertinti
avarijų pasekmes bei numatyti ilgalaikį radiacinį poveikį aplinkai
ir gyventojams galutinai palaidojus eksploatacijos metu
susidariusias DP užterštas radioaktyviąsias atliekas. Atsižvelgus
į RBMK-1500 reaktoriaus PCK vandens aktyvumo matavimo specifiką,
šiame darbe pateiktas papildytas DP balanso reaktoriaus
pagrindiniame cirkuliaciniame kontūre modelis ir įvertintas
radionuklidų koncentracijos kuro tarpelyje ir reaktoriaus
pagrindiniame cirkuliaciniame kontūre kitimas kuro elemento
cirkonio apvalkalo trūkio atveju bei pasiūlytos ir įvertintos
atitinkamos radionuklidų koncentracijos pataisos. Išanalizuotas
jodo izotopų išsiskyrimas iš kuro RBMK-1500 reaktoriaus atveju.
Pateikiami jodo radionuklidų išlakų į RBMK-1500 reaktoriaus
pagrindinį cirkuliacinį kontūrą modeliavimo ir analizės
rezultatai. Apskaičiuoti jodo izotopų sklaidos RBMK-1500
reaktoriaus kontūre modelio parametrai ir efektinis jodo difuzijos
koeficientas D′ RBMK-1500 reaktoriaus branduoliniame kure.
References / Nuorodos
[1] IAEA-TECDOC-1345, Fuel failure in water reactors: Causes and
mitigation, in: Proceedings of a Technical Meeting
(Bratislava, Slovakia, June 2002)
[2] W. Müller, Activity determination – an overview, in: Determination
and Declaration of Nuclide Specific Activity Inventories in
Radioactive Wastes, International Workshop (Cologne, Germany,
2001) pp. 1–10
[3] F.C. Iglesias, B.J. Lewis, P.J. Reid, and P. Elder, Fission
product release mechanisms during reactor accident conditions, J.
Nucl. Mater. 270, 21–38 (1999),
http://dx.doi.org/10.1016/S0022-3115(98)00738-7
[4] B.J. Lewis and A. Husain, Modelling the activity of 129I
in the primary coolant of a CANDU reactor, J. Nucl. Mater. 312,
81–96 (2003),
http://dx.doi.org/10.1016/S0022-3115(02)01588-X
[5] V. Remeikis and A. Jurkevicius, Evolution of the neutron sensor
characteristics in the RBMK-1500 reactor neutron flux, Nucl. Eng.
Des. 231, 271–282 (2004),
http://dx.doi.org/10.1016/j.nucengdes.2004.03.011
[6] K. Almenas, A. Kaliatka, and E. Ušpuras, Ignalina
RBMK-1500. A Source Book. Extended and Updated Version
(Lithuanian Energy Institute, Kaunas, 1998)
[7] General safety regulations of nuclear power plants during
design, construction, and operation (OPB-82), Atomic Energy 54(2),
151–160 (1983) [In Russian]
[8] B.J. Lewis, Fundamental aspects of defective nuclear fuel
behaviour and fission product release, J. Nucl. Mater. 160,
201–217 (1988),
http://dx.doi.org/10.1016/0022-3115(88)90049-9
[9] Instructions for Operation of Installation of Bypass
Purification of MCC Water of Building 101/1,2 of Units 1, 2,
PTO-ED-0912-116V7 (Ignalina NPP, 2004) [in Russian]
[10] P. Lösönen, On the behaviour of intragranular fission gas in UO2
fuel, J. Nucl. Mater. 280, 56–72 (2000),
http://dx.doi.org/10.1016/S0022-3115(00)00028-3
[11] J.A. Turnbull, R.J. White, and C. Wise, The diffusion
coefficient for fission gas atoms in uranium dioxide, in: IAEA
Technical Committee Meeting on Water Reactor Fuel Element Computer
Modelling in Steady State, Transient and Accident Conditions,
Preston, England (1988)
[12] J.A. Turnbull, C.A. Friskney, J.R. Findlay, F.A. Johnson, and
A.J. Water, The diffusion coefficient of gaseous and volatile
species during the irradiation of uranium dioxide, J. Nucl. Mater.
107, 168–184 (1982),
http://dx.doi.org/10.1016/0022-3115(82)90419-6
[13] H.J. Matzke, Gas release mechanisms in UO2 – a
critical review, Rad. Effects 53, 219–242 (1980),
http://dx.doi.org/10.1080/00337578008207118
[14] B.J. Lewis, R.D. MacDonald, and H.W. Bonin, Release of iodine
and noble gas fission products from defected fuel elements during
reactor shutdown and start-up, Nucl. Technol. 92, 315–324
(1990),
http://www.ans.org/pubs/journals/nt/a_16234
[15] B.J. Lewis, Fission product release from nuclear fuel by recoil
and knockout, J. Nucl. Mater. 148, 28–42 (1987),
http://dx.doi.org/10.1016/0022-3115(87)90515-0
[16] C. Wise, Recoil release of fission products from nuclear fuel,
J. Nucl. Mater. 136, 30–47 (1985),
http://dx.doi.org/10.1016/0022-3115(85)90028-5
[17] Monitoring Schedule for Ensuring the Radiation Protection
and Safety at Ignalina NPP for 2006, PTO–ED-0515-2B7
(Ignalina NPP, 2005) [in Russian]
[18] Instructions for Carrying out Radiometric and Dosimetric
Measurements at Ignalina NPP, PTO-ED-0512-5B8 (Ignalina NPP,
2002) [in Russian]
[19] A Set of Methodics to be Used for Measurements of
Radionuclide Composition in Technological Media, PTOED-0528-1B3
(Ignalina NPP, 2005) [in Russian]
[20] B.J. Lewis, C.E.L. Hunt, and F.C. Iglesias, Source term of
iodine and noble gas fission products in the fuel-to-sheath gap of
intact operating nuclear fuel elements, J. Nucl. Mater. 172,
197–205 (1990),
http://dx.doi.org/10.1016/0022-3115(90)90438-S