[PDF]
http://dx.doi.org/10.3952/lithjphys.47302
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 249–254 (2007)
INTENSITY ENHANCEMENT IN THE
EMISSION SPECTRA OF Sb, Sn, AND W IONS DUE TO THE MIXING OF
CONFIGURATIONS WITH SYMMETRIC EXCHANGE OF SYMMETRY
S. Kučas, V. Jonauskas, R. Karazija, and A. Momkauskaitė
Institute of Theoretical Physics and Astronomy of Vilnius
University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: kucas@itpa.lt
Received 18 June 2007
The essential narrowing of
emission spectrum due to the configuration mixing with a symmetric
exchange of symmetry is considered for ions with an open 4dN
electron shell. The relativistic CI calculations have been
performed for Sn9+–Sn12+ and Sb10+–Sb11+
ions, which are the most promising emitters for EUV lithography,
and for Wq+ ions, which give a strong undesirable emission in
tokamak plasma. It is shown that the inclusion of interaction with
other energetically neighbouring configurations only weakly
influences the integral characteristics of the main group of lines
or quasicontinuum band – its total intensity, width, and shape.
The similarity between photoexcitation and emission spectra,
related with the ground level, that has been previously
established for highly charged tungsten ions, manifests itself
also at medium ionization degrees. The relative widths of intense
groups of lines in such spectra of tin and antimony ions increase
in comparison with tungsten; however, the spectra of Sn9+
and Sb10+ with a half-filled 4d5
shell have an extremely narrow width.
Keywords: multicharged ions,
configuration mixing, integral characteristics of spectra, EUV
lithography, thermonuclear plasma
PACS: 31.25.Jf, 32.30.Jc, 52.25.Os
INTENSYVUMO SISTIPRĖJIMAS Sb, Sn
IR W JONŲ EMISIJOS SPEKTRUOSE, ATSIRANDANTIS DĖL KONFIGŪRACIJŲ
SU SIMETRIŠKU SIMETRIJOS PASIKEITIMU SUMAIŠYMO
S. Kučas, V. Jonauskas, R. Karazija, A. Momkauskaitė
Vilniaus universiteto Teorinės fizikos ir astronomijos
institutas, Vilnius, Lietuva
Nagrinėjamas intensyvių ir siaurų linijų grupių
susidarymas dėl stipraus konfigūracijų sumaišymo jonų
fotoabsorbcijos ir emisijos spektruose, atitinkančiuose šuolius 4p54dN+1
+ 4p64dN–14f →
4p64dN. Skaičiavimai
reliatyvistiniu artutinumu atlikti Sn9+–Sn12+
ir Sb10+–Sb11+ jonams, kurie yra
pagrindiniai kandidatai kuriant ultravioletinių spindulių šaltinį
litografijai, ir volframo jonams Wq+, kurių
intensyvi spinduliuotė sudaro nepageidaujamus nuostolius tokamako
plazmoje. Parodyta, kad sumaišymas su kitomis sužadintomis
konfigūracijomis turi mažai įtakos intensyviausių linijų grupės
integrinėms charakteristikoms. Ypač stiprus spektro susiaurėjimas
pasireiškia volframo jonams, kurių konfigūracijose yra daugiau
kaip trys 4d elektronai, taip pat alavo ir stibio jonams su
pusiau užpildytu 4d elektronų sluoksniu.
References / Nuorodos
[1] D.R. Beck and C.A. Nicolaides, Int. J. Quantum Chem. S10,
119 (1976)
[2] R. Karazija, Introduction to the Theory of X-ray and
Electronic Spectra (Plenum Press, New York, 1996)
[3] G. O'Sullivan and P.K. Carroll, J. Opt. Soc. Am. 71, 227
(1981),
http://dx.doi.org/10.1364/JOSA.71.000227
[4] Special Cluster on Extreme Ultraviolet Light Sources for
Semiconductor Manufacturing, ed. D. Attwood, issue 23 of J. Phys D
37 (2004)
[5] K. Fahy, P. Dunne, L. McKinney et al., J. Phys. D 37,
3225 (2004),
http://dx.doi.org/10.1088/0022-3727/37/23/003
[6] N. Böwering, M. Martins, W.N. Partlo, and I.V. Fomenkov, J.
Appl. Phys. 95, 16 (2004),
http://dx.doi.org/10.1063/1.1629153
[7] T. Krücken, K. Bergmann, L. Juschkin, and R. Lebert, J. Phys. D
37, 3213 (2004),
http://dx.doi.org/10.1088/0022-3727/37/23/002
[8] A. Cummings, G. O'Sullivan, P. Dunne, E. Sokell, N. Murphy, J.
White, P. Hayden, P. Sheridan, M. Lysaght, and F. O'Reilly, J. Phys.
D 39, 73 (2006),
http://dx.doi.org/10.1088/0022-3727/39/1/013
[9] J. White, P. Hayden, P. Dunne, A. Cummings, N. Murphy, P.
Sheridan, and G. O'Sullivan, J. Appl. Phys. 98, 113301
(2005),
http://dx.doi.org/10.1063/1.2128055
[10] R. Karazija, S. Kučas, and A. Momkauskaitė, J. Phys. D 39,
2973 (2006),
http://dx.doi.org/10.1088/0022-3727/39/14/016
[11] T. Pütterich, R. Neu, C. Biedermann, R. Radtke, and ASDEX
Upgrade Team, J. Phys. B 38, 3071 (2005),
http://dx.doi.org/10.1088/0953-4075/38/16/017
[12] C. Biedermann, R. Radtke, J.-L. Schwob, P. Mandelbaum, R.
Doron, T. Fuchs, and G. Fußmann, Physica Scripta T92, 85
(2001)
[13] R. Radtke, C. Biedermann, J.L. Schwob, P. Mandelbaum, and R.
Doron, Phys. Rev. A 64, 012720 (2001),
http://dx.doi.org/10.1103/PhysRevA.64.012720
[14] V. Jonauskas, S. Kučas, and R. Karazija, J. Phys. B 40,
2179 (2007),
http://dx.doi.org/10.1088/0953-4075/40/11/018
[15] http://www.am.qub.ac.uk/DARC
[16] R.D. Cowan, The Theory of Atomic Structure and Spectra
(University of California Press, Berkeley, California, 1981)
[17] S.S. Churilov and A.N. Ryabtsev, Opt. Spectrosc. 101,
169 (2006),
http://dx.doi.org/10.1134/S0030400X06080017
[18] S. Kučas, R. Karazija, and V. Tutlys, Lietuvos fizikos rinkinys
[Sov. Phys. Collection] 24, 16 (1984) [in Russian]