[PDF]    http://dx.doi.org/10.3952/lithjphys.47302

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 249–254 (2007)


INTENSITY ENHANCEMENT IN THE EMISSION SPECTRA OF Sb, Sn, AND W IONS DUE TO THE MIXING OF CONFIGURATIONS WITH SYMMETRIC EXCHANGE OF SYMMETRY
S. Kučas, V. Jonauskas, R. Karazija, and A. Momkauskaitė
Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: kucas@itpa.lt

Received 18 June 2007

The essential narrowing of emission spectrum due to the configuration mixing with a symmetric exchange of symmetry is considered for ions with an open 4dN electron shell. The relativistic CI calculations have been performed for Sn9+–Sn12+ and Sb10+–Sb11+ ions, which are the most promising emitters for EUV lithography, and for Wq+ ions, which give a strong undesirable emission in tokamak plasma. It is shown that the inclusion of interaction with other energetically neighbouring configurations only weakly influences the integral characteristics of the main group of lines or quasicontinuum band – its total intensity, width, and shape. The similarity between photoexcitation and emission spectra, related with the ground level, that has been previously established for highly charged tungsten ions, manifests itself also at medium ionization degrees. The relative widths of intense groups of lines in such spectra of tin and antimony ions increase in comparison with tungsten; however, the spectra of Sn9+ and Sb10+ with a half-filled 4d5 shell have an extremely narrow width.
Keywords: multicharged ions, configuration mixing, integral characteristics of spectra, EUV lithography, thermonuclear plasma
PACS: 31.25.Jf, 32.30.Jc, 52.25.Os


INTENSYVUMO SISTIPRĖJIMAS Sb, Sn IR W JONŲ EMISIJOS SPEKTRUOSE, ATSIRANDANTIS DĖL KONFIGŪRACIJŲ SU SIMETRIŠKU SIMETRIJOS PASIKEITIMU SUMAIŠYMO
S. Kučas, V. Jonauskas, R. Karazija, A. Momkauskaitė
Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Nagrinėjamas intensyvių ir siaurų linijų grupių susidarymas dėl stipraus konfigūracijų sumaišymo jonų fotoabsorbcijos ir emisijos spektruose, atitinkančiuose šuolius 4p54dN+1 + 4p64dN–14f → 4p64dN. Skaičiavimai reliatyvistiniu artutinumu atlikti Sn9+–Sn12+ ir Sb10+–Sb11+ jonams, kurie yra pagrindiniai kandidatai kuriant ultravioletinių spindulių šaltinį litografijai, ir volframo jonams Wq+, kurių intensyvi spinduliuotė sudaro nepageidaujamus nuostolius tokamako plazmoje. Parodyta, kad sumaišymas su kitomis sužadintomis konfigūracijomis turi mažai įtakos intensyviausių linijų grupės integrinėms charakteristikoms. Ypač stiprus spektro susiaurėjimas pasireiškia volframo jonams, kurių konfigūracijose yra daugiau kaip trys 4d elektronai, taip pat alavo ir stibio jonams su pusiau užpildytu 4d elektronų sluoksniu.


References / Nuorodos


[1] D.R. Beck and C.A. Nicolaides, Int. J. Quantum Chem. S10, 119 (1976)
[2] R. Karazija, Introduction to the Theory of X-ray and Electronic Spectra (Plenum Press, New York, 1996)
[3] G. O'Sullivan and P.K. Carroll, J. Opt. Soc. Am. 71, 227 (1981),
http://dx.doi.org/10.1364/JOSA.71.000227
[4] Special Cluster on Extreme Ultraviolet Light Sources for Semiconductor Manufacturing, ed. D. Attwood, issue 23 of J. Phys D 37 (2004)
[5] K. Fahy, P. Dunne, L. McKinney et al., J. Phys. D 37, 3225 (2004),
http://dx.doi.org/10.1088/0022-3727/37/23/003
[6] N. Böwering, M. Martins, W.N. Partlo, and I.V. Fomenkov, J. Appl. Phys. 95, 16 (2004),
http://dx.doi.org/10.1063/1.1629153
[7] T. Krücken, K. Bergmann, L. Juschkin, and R. Lebert, J. Phys. D 37, 3213 (2004),
http://dx.doi.org/10.1088/0022-3727/37/23/002
[8] A. Cummings, G. O'Sullivan, P. Dunne, E. Sokell, N. Murphy, J. White, P. Hayden, P. Sheridan, M. Lysaght, and F. O'Reilly, J. Phys. D 39, 73 (2006),
http://dx.doi.org/10.1088/0022-3727/39/1/013
[9] J. White, P. Hayden, P. Dunne, A. Cummings, N. Murphy, P. Sheridan, and G. O'Sullivan, J. Appl. Phys. 98, 113301 (2005),
http://dx.doi.org/10.1063/1.2128055
[10] R. Karazija, S. Kučas, and A. Momkauskaitė, J. Phys. D 39, 2973 (2006),
http://dx.doi.org/10.1088/0022-3727/39/14/016
[11] T. Pütterich, R. Neu, C. Biedermann, R. Radtke, and ASDEX Upgrade Team, J. Phys. B 38, 3071 (2005),
http://dx.doi.org/10.1088/0953-4075/38/16/017
[12] C. Biedermann, R. Radtke, J.-L. Schwob, P. Mandelbaum, R. Doron, T. Fuchs, and G. Fußmann, Physica Scripta T92, 85 (2001)
[13] R. Radtke, C. Biedermann, J.L. Schwob, P. Mandelbaum, and R. Doron, Phys. Rev. A 64, 012720 (2001),
http://dx.doi.org/10.1103/PhysRevA.64.012720
[14] V. Jonauskas, S. Kučas, and R. Karazija, J. Phys. B 40, 2179 (2007),
http://dx.doi.org/10.1088/0953-4075/40/11/018
[15] http://www.am.qub.ac.uk/DARC
[16] R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, California, 1981)
[17] S.S. Churilov and A.N. Ryabtsev, Opt. Spectrosc. 101, 169 (2006),
http://dx.doi.org/10.1134/S0030400X06080017
[18] S. Kučas, R. Karazija, and V. Tutlys, Lietuvos fizikos rinkinys [Sov. Phys. Collection] 24, 16 (1984) [in Russian]