[PDF]
http://dx.doi.org/10.3952/lithjphys.47305
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 273–278 (2007)
DISPERSION CHARACTERISTICS OF
METAMATERIAL
HOLLOW-CORE CYLINDRICAL WAVEGUIDES*
L. Nickelson, T. Gric, and S. Ašmontas
Semiconductor Physics Institute, A. Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: nick@pfi.lt
Received 12 June 2007; revised 23
July 2007
The work deals with the study of
metamaterial hollow-core cylindrical (MHC) waveguides. In the
article the solution of Maxwell’s equations to analyse a MHC
waveguide is presented. A dispersion equation was obtained in the
form of a determinant. We created the computer algorithm in MATLAB
language to investigate the dispersion properties of the MHC
waveguide. The MHC waveguide was studied in the frequency range
from 75 to 115 GHz with different waveguide parameters (radius,
azimuthal index). We have analysed the dependences of the MHC
waveguide main and higher order modes’ dispersion characteristics
on a waveguide radius and an azimuthal index.
Keywords: metamaterial, hollow
cylindrical waveguide, Maxwell’s equations, dispersion equation,
computer algorithm, MATLAB, numerical calculations, dispersion
characteristics
PACS: 42.81.Qb
*The report presented at the 37th Lithuanian National Physics
Conference, 11–13 June 2007, Vilnius, Lithuania.
METAMEDŽIAGINIŲ TUŠČIAVIDURIŲ
CILINDRINIŲ BANGOLAIDŽIŲ DISPERSINĖS CHARAKTERISTIKOS
L. Nickelson, T. Gric, S. Ašmontas
Puslaidininkių fizikos institutas, Vilnius, Lietuva
Nagrinėjamas metamedžiaginis tuščiaviduris
cilindrinis bangolaidis. Siekiant išnagrinėti tokių bangolaidžių
savybes, spręstos Maksvelo lygtys. Gauta dispersinė lygtis buvo
užrašyta determinanto pavidalu. Naudojant MATLAB programavimo
kalbą, buvo sukurtas kompiuterinis algoritmas metamedžiaginių
tuščiavidurių cilindrinių bangolaidžių dispersinėms savybėms
analizuoti. Metamedžiaginis tuščiaviduris bangolaidis su
skirtingais parametrais (skirtingas spindulys, azimutinis
periodiškumo indeksas) buvo analizuojamas 75–115 GHz ruože.
Ištirtos metamedžiaginio tuščiavidurio cilindrinio bangolaidžio
pagrindinės bei aukščiausiosios eilės modų dispersinių
charakteristikų priklausomybės nuo bangolaidžio spindulio ir
azimutinio indekso.
References / Nuorodos
[1] H.-T. Chen, J.F. O'Hara, A.J. Taylor, R.D. Averitt, C.
Highstrete, M. Lee, and W.J. Padilla, Complementary planar terahertz
metamaterials, Opt. Express 15(3), 1084–1095 (2007),
http://dx.doi.org/10.1364/OE.15.001084
[2] R. Ruppin, Surface polaritons of a left-handed medium, Phys.
Lett. A 277(1), 61–64 (2000),
http://dx.doi.org/10.1016/S0375-9601(00)00694-0
[3] R. Ruppin, Surface polaritons of a left-handed material slab, J.
Phys. Cond. Matter 13(9), 1811–1819 (2001),
http://dx.doi.org/10.1088/0953-8984/13/9/304
[4] G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P.
Roberts, and B. Mangan, Hollow core photonic crystal fibers for beam
delivery, Opt. Express 12(8), 1477–1484 (2004),
http://dx.doi.org/10.1364/OPEX.12.001477
[5] D.G. Ouzounov, F.R. Ahmad, D. Muller, N. Venkataraman, M.T.
Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and A.L. Gaeta,
Generation of megawatt optical solitons in hollow-core photonic
band-gap fibers, Science 301(5640), 1702–1704 (2003),
http://dx.doi.org/10.1126/science.1088387
[6] J.D. Shephard, J.D.C. Jones, D.P. Hand, G. Bouwmans, J.C.
Knight, P.St.J. Russell, and B.J. Mangan, High energy nanosecond
laser pulses delivered single-mode through hollow-core PBG fibers,
Opt. Express 12(4), 717–723 (2004),
http://dx.doi.org/10.1364/OPEX.12.000717
[7] D.R. Smith, P. Rye, D.C. Vier, A.F. Starr, J.J. Mock, and T.
Perram, Design and measurement of anisotropic metamaterials that
exhibit negative refraction, IEICE Trans. Electron. E87-C(3),
359 (2004)
[8] K.Y. Kim, H.-S. Tae, and J.-H. Lee, Analysis of leaky modes in
circular dielectric rod waveguides, Electron. Lett. 39(1),
61–62 (2003),
http://dx.doi.org/10.1049/el:20030111
[9] R.S. Penciu, M. Kafesaki, T.F. Gundogdu, E.N. Economou, and C.M.
Soukoulis, Theoretical study of left-handed behavior of composite
metamaterials, Photonics Nanostruct. 4(1), 12–16 (2006),
http://dx.doi.org/10.1016/j.photonics.2005.11.001