[PDF]    http://dx.doi.org/10.3952/lithjphys.47305

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 273–278 (2007)


DISPERSION CHARACTERISTICS OF METAMATERIAL
HOLLOW-CORE CYLINDRICAL WAVEGUIDES*

L. Nickelson, T. Gric, and S. Ašmontas
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: nick@pfi.lt

Received 12 June 2007; revised 23 July 2007

The work deals with the study of metamaterial hollow-core cylindrical (MHC) waveguides. In the article the solution of Maxwell’s equations to analyse a MHC waveguide is presented. A dispersion equation was obtained in the form of a determinant. We created the computer algorithm in MATLAB language to investigate the dispersion properties of the MHC waveguide. The MHC waveguide was studied in the frequency range from 75 to 115 GHz with different waveguide parameters (radius, azimuthal index). We have analysed the dependences of the MHC waveguide main and higher order modes’ dispersion characteristics on a waveguide radius and an azimuthal index.
Keywords: metamaterial, hollow cylindrical waveguide, Maxwell’s equations, dispersion equation, computer algorithm, MATLAB, numerical calculations, dispersion characteristics
PACS: 42.81.Qb
*The report presented at the 37th Lithuanian National Physics Conference, 11–13 June 2007, Vilnius, Lithuania.


METAMEDŽIAGINIŲ TUŠČIAVIDURIŲ CILINDRINIŲ BANGOLAIDŽIŲ DISPERSINĖS CHARAKTERISTIKOS
L. Nickelson, T. Gric, S. Ašmontas
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Nagrinėjamas metamedžiaginis tuščiaviduris cilindrinis bangolaidis. Siekiant išnagrinėti tokių bangolaidžių savybes, spręstos Maksvelo lygtys. Gauta dispersinė lygtis buvo užrašyta determinanto pavidalu. Naudojant MATLAB programavimo kalbą, buvo sukurtas kompiuterinis algoritmas metamedžiaginių tuščiavidurių cilindrinių bangolaidžių dispersinėms savybėms analizuoti. Metamedžiaginis tuščiaviduris bangolaidis su skirtingais parametrais (skirtingas spindulys, azimutinis periodiškumo indeksas) buvo analizuojamas 75–115 GHz ruože. Ištirtos metamedžiaginio tuščiavidurio cilindrinio bangolaidžio pagrindinės bei aukščiausiosios eilės modų dispersinių charakteristikų priklausomybės nuo bangolaidžio spindulio ir azimutinio indekso.


References / Nuorodos


[1] H.-T. Chen, J.F. O'Hara, A.J. Taylor, R.D. Averitt, C. Highstrete, M. Lee, and W.J. Padilla, Complementary planar terahertz metamaterials, Opt. Express 15(3), 1084–1095 (2007),
http://dx.doi.org/10.1364/OE.15.001084
[2] R. Ruppin, Surface polaritons of a left-handed medium, Phys. Lett. A 277(1), 61–64 (2000),
http://dx.doi.org/10.1016/S0375-9601(00)00694-0
[3] R. Ruppin, Surface polaritons of a left-handed material slab, J. Phys. Cond. Matter 13(9), 1811–1819 (2001),
http://dx.doi.org/10.1088/0953-8984/13/9/304
[4] G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, Hollow core photonic crystal fibers for beam delivery, Opt. Express 12(8), 1477–1484 (2004),
http://dx.doi.org/10.1364/OPEX.12.001477
[5] D.G. Ouzounov, F.R. Ahmad, D. Muller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, and A.L. Gaeta, Generation of megawatt optical solitons in hollow-core photonic band-gap fibers, Science 301(5640), 1702–1704 (2003),
http://dx.doi.org/10.1126/science.1088387
[6] J.D. Shephard, J.D.C. Jones, D.P. Hand, G. Bouwmans, J.C. Knight, P.St.J. Russell, and B.J. Mangan, High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers, Opt. Express 12(4), 717–723 (2004),
http://dx.doi.org/10.1364/OPEX.12.000717
[7] D.R. Smith, P. Rye, D.C. Vier, A.F. Starr, J.J. Mock, and T. Perram, Design and measurement of anisotropic metamaterials that exhibit negative refraction, IEICE Trans. Electron. E87-C(3), 359 (2004)
[8] K.Y. Kim, H.-S. Tae, and J.-H. Lee, Analysis of leaky modes in circular dielectric rod waveguides, Electron. Lett. 39(1), 61–62 (2003),
http://dx.doi.org/10.1049/el:20030111
[9] R.S. Penciu, M. Kafesaki, T.F. Gundogdu, E.N. Economou, and C.M. Soukoulis, Theoretical study of left-handed behavior of composite metamaterials, Photonics Nanostruct. 4(1), 12–16 (2006),
http://dx.doi.org/10.1016/j.photonics.2005.11.001