[PDF]
http://dx.doi.org/10.3952/lithjphys.47309
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 333–342 (2007)
VALENCE OF VANADIUM IN HYDRATED
COMPOUNDS*
V. Bondarenkaa, S. Grebinskija, S.
Mickevičiusa, H. Tvardauskasa, S. Kačiulisb,
V. Volkovc, G. Zakharovac, and A.
Pašiškevičiusa
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: bond@pfi.lt
bInstitute for the Study of Nanostructured Materials
(ISMN-CNR), P.O. Box 10, I-00016 Monterotondo Scalo (RM), Italy
E-mail: saulius.kaciulis@mlib.cnr.it
cInstitute of Solid State Chemistry,
Pervomaiskaya 91, 620219, Yekaterinburg, Russia
E-mail: volkov@ihim.uran.ru
Received 14 June 2007; revised 2
July 2007
Problems of the definition of
vanadium chemical states in the mixed valency compounds are
examined. The statistical analysis of the literature data on the
values of binding energy and full width at half maximum (FWHM) of
V 2p3/2 peaks in different vanadium oxides is
carried out.
X-ray photoelectron spectroscopy was used to determine the
chemical shift and FWHM of V 2p peaks of V4+ and
V5+ cations in the vanadium pentoxide matrix of
hydrated vanadium compounds HV12O31·nH2O
and (VO)V12O31·nH2O,
prepared by using sol–gel technology. It was found that the
binding energy of V4+ ions shifts to the lower energy
side of about 1.3 eV as compared to the main V5+ ions
in the matrix. The V 2p3/2 line width for
tetra-valent vanadium ions in xerogels is actually the same as for
penta-valent ions.
Keywords: sol–gel method, XPS, vanadium
oxides
PACS: 81.20.FW, 79.60.-i, 82.80.Pv
*The report presented at the 37th Lithuanian National Physics
Conference, 11–13 June 2007, Vilnius, Lithuania.
VANADŽIO VALENTINGUMAS
HIDRATUOTUOSE JUNGINIUOSE
V. Bondarenkaa, S. Grebinskija, S.
Mickevičiusa, H. Tvardauskasa, S. Kačiulisb,
V. Volkovc, G. Zakharovac, A. Pašiškevičiusa
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bNanostruktūrinių medžiagų tyrimo institutas,
Roma, Italija
cKietojo kūno chemijos institutas,
Jekaterinburgas, Rusija
Analizuojama cheminė daugiavalenčių vanadžio
junginių sandara. Atlikta V 2p3/2 smailių ryšio
energijos ir jų puspločio įvairiuose vanadžio oksiduose
literatūrinių duomenų statistinė analizė. Rentgeno fotoelektronų
spektroskopijos (RFS) metodu buvo tirti hidratuoti vanadžio
pentoksido HV12O31·nH2O ir
(VO)V12O31·nH2O bandiniai,
pagaminti taikant standartinę zolio ir gelio technologiją.
Nustatyta, kad V4+ jonų ryšio energija (RE), lyginant
su pagrindinių matricos V5+ jonų RE, pasislinkusi į
mažesnių energijos verčių pusę maždaug per 1,3 eV, o abiejų jonų
smailių puspločiai yra vienodi.
References / Nuorodos
[1] S. Briggs and M.P. Seah, Practical Surface Analysis, Vol. 1
(Wiley, New York, 1990)
[2] J.F. Moulder, W.F. Stricle, P.E. Sobol, and K.D. Bomben,
Handbook of X-Ray Photoelectron Spectroscopy (Perkin–Elmer
Corporation, Physical Electronics Division, 1995)
[3] M. Demeter, M. Neumann, and W. Reichelt, Mixed-valence vanadium
oxides studied by XPS, Surf. Sci. 454–456(18), 41–44 (2000),
http://dx.doi.org/10.1016/S0039-6028(00)00111-4
[4] V. Bondarenka, Z. Martunas, S. Kaciulis, and L. Pandolfi,
Sol–gel synthesis and XPS characterization of sodium–vanadium oxide
bronze thin films, J. Electron Spectrosc. Related Phenom. 131–132(1),
99–103 (2003),
http://dx.doi.org/10.1016/S0368-2048(03)00110-5
[5] G.A. Sawatzky and D. Post, X-ray photoelectron and Auger
spectroscopy study of some vanadium oxides, Phys. Rev. B 20(4),
1546–1555 (1979),
http://dx.doi.org/10.1103/PhysRevB.20.1546
[6] C. Malitesta, L. Sabbatini, L. Torsi, P.G. Zambonin, D.
Ballivet-Tkatchenko, J. Galy, J.-L. Parize, and J.M. Savariault,
Copper speciation by analytical electron spectroscopies: Case of the
intercalation phase Cu0.5V2O5·0.5H2O,
Surf. Interf. Analysis 19(1–12), 513–518 (1992)
[7] M.P. Casaletto, L. Lisi, G. Mattogno, P. Patrono, G. Ruoppolo,
and G. Russo, Oxidative dehydrogenation of ethane on γ-Al2O3
supported vanadyl and iron vanadyl phosphates: Physico-chemical
characterisation and catalytic activity, Appl. Catalysis A 226(1–2),
41–48 (2002),
http://dx.doi.org/10.1016/S0926-860X(01)00881-X
[8] J. Medialdua, R. Casanova, and Y. Barbaux, XPS studies of V2O5,
V6O13, VO2 and V2O3,
J. Electron Spectrosc. Related Phenom. 71(3), 249–261
(1995),
http://dx.doi.org/10.1016/0368-2048(94)02291-7
[9] Z. Zhang and V.E. Henrich, Electronic interactions in the
vanadium / TiO2(110) and vanadia / TiO2(110)
model catalyst systems, Surf. Sci. 277(3), 263–272 (1992),
http://dx.doi.org/10.1016/0039-6028(92)90767-Z
[10] G. Hopfengartner, D. Borgmann, I. Rademacher, G. Wedler, E.
Hums, and G.W. Spitznagel, XPS studies of oxidic model catalysts:
Internal standards and oxidation numbers, J. Electron Spectrosc.
Related Phenom. 63(2), 91–116 (1993),
http://dx.doi.org/10.1016/0368-2048(93)80042-K
[11] S.L.T. Andersson, ESCA investigation of V2O5+TiO2
catalysts for the vapour phase oxidation of alkylpyridines, J. Chem.
Soc. Faraday Trans. I 75, 1356–1370 (1979),
http://dx.doi.org/10.1039/f19797501356
[12] J. Cui, D. Da, and W. Jiang, Structure characterization of
vanadium oxide thin films prepared by magnetron sputtering methods,
Appl. Surf. Sci. 133(3), 225–229 (1998),
http://dx.doi.org/10.1016/S0169-4332(98)00201-3
[13] R. Holm and S. Storp, ESCA studies of chemical shifts for metal
oxides, Appl. Phys. A 9(3), 217–222 (1976),
http://dx.doi.org/10.1007/bf00900608
[14] R.J. Colton, A.M. Guzman, and J.W. Rabalais, Electrochromism in
some thin-film transition-metal oxides characterized by x-ray
electron spectroscopy, J. Appl. Phys. 49(1), 409–416 (1978),
http://dx.doi.org/10.1063/1.324349
[15] B. Horvath, J. Strutz, J. Geyer-Lippmann, and E.G. Horvath,
Preparation, properties, and ESCA characterization of vanadium
surface compounds on silicagel. II, Z. Anorg. Allg. Chem. 483(12),
193–204 (1981),
http://dx.doi.org/10.1002/zaac.19814831224
[16] G. Blaauw, F. Leenhouts, F. van der Woude, and G.A. Sawatsky,
The metal–non-metal transition in VO2: X-ray
photoemission and resistivity measurements, J. Phys. C 8(4),
459–468 (1975),
http://dx.doi.org/10.1088/0022-3719/8/4/014
[17] J. Kasperkiewicz, J.A. Kovacich, and D. Lichtman, XPS studies
of vanadium and vanadium oxides, J. Electron Spectrosc. Related
Phenom. 32(2), 123–132 (1983),
http://dx.doi.org/10.1016/0368-2048(83)85090-7
[18] V. Bondarenka, S. Grebinskij, S. Kačiulis, G. Mattogno, and S.
Mickevičius, Surface chemical composition of MV10Mo2O31·nH2O
(M = Na2, K2, Ca, Sr, Cu) xerogels, J.
Electron Spectrosc. Related Phenom. 107(3), 253–259 (2000),
http://dx.doi.org/10.1016/S0368-2048(00)00152-3
[19] S. Lu, L. Hou, and F. Gan, Preparation and optical properties
of phase-change VO2 thin films, J. Mater. Sci. 28(8),
2169–2177 (1993),
http://dx.doi.org/10.1007/BF00367579
[20] A.I. Minyaev, I.A. Denisov, V.E. Soroko, and V.A. Konovalov,
Study of solid phase transformation of vanadium based systems, Zh.
Prikl. Khim. [Russ. J. Appl. Chem.] 59(2), 339–343 (1986)
[21] Present paper
[22] M.P. Casaletto, S. Kaciulis, L. Lisi, G. Mattogno, A. Mezzi, P.
Patrono, and G. Ruoppolo, XPS characterisation of iron-modified
vanadyl phosphate catalysts, Appl. Catalysis A 218(1–2),
129–137 (2001),
http://dx.doi.org/10.1016/S0926-860X(01)00628-7
[23] R. Larsson, B. Folkesson, and G. Schoen, X-ray photoelectron
spectroscopy and homogenous catalysis. 1. Investigations on some
vanadium compounds, Chem. Scr. 3(2), 88–90 (1973)
[24] B. Barbaray, J.P. Contour, and G. Mouvier, Effects of nitrogen
dioxide and water vapour on oxidation of sulphur dioxide over
vanadium pentoxide particles, Env. Sci. Technol. 12(12),
1294–1297 (1978),
http://dx.doi.org/10.1021/es60147a012
[25] M. Takagi-Kawai, M. Soma, T. Onishi, and K. Tamaru, The
adsorption and the reaction of NH3 and NOx
on supported V2O5 catalysts: Effect of
supporting materials, Canadian J. Chem. 58(20), 2132–2137
(1980),
http://dx.doi.org/10.1139/v80-340
[26] W.E. Slinkard and P.B. Degroot, Vanadium–titanium oxide
catalysts for oxidation of butene to acetic acid, J. Catalysis 68(2),
423–432 (1981),
http://dx.doi.org/10.1016/0021-9517(81)90113-5
[27] Z. Zhang and V.E. Henrich, Surface electronic structure of V2O5(001):
Defect states and chemisorption, Surf. Sci. 321(1–2),
133–144 (1994),
http://dx.doi.org/10.1016/0039-6028(94)90034-5
[28] J.L.G. Fierro, L.A. Arrua, J.M.L. Nieto, and G. Kremenic,
Surface properties of co-precipitated V–Ti–O catalysts and their
relation to the selective oxidation of isobutene, Appl. Catalysis 37(1–2),
323–338 (1988),
http://dx.doi.org/10.1016/S0166-9834(00)80770-8
[29] A. Meisel, K.H. Hallmeier, R. Szargan, J. Muller, and W.
Schneider, Investigation of soft X-ray emission and K-edge
absorption spectra of V2O5 and LixV2O5
electrodes, Phys. Scripta 41(4), 513–516 (1990),
http://dx.doi.org/10.1088/0031-8949/41/4/031
[30] V.I. Nefedov, Y.V. Salyn, G. Leonhardt, and R. Scheibe, A
comparison of different spectrometers and charge corrections used in
X-ray photoelectron spectroscopy, J. Electron Spectrosc. Related
Phenom. 10(2), 121–124 (1977),
http://dx.doi.org/10.1016/0368-2048(77)85010-X
[31] Y. Schuhl, H. Baussart, R. Delobel, M. Le Bras, J. Leroy, L.G.
Gengembre, and J. Rimblot, Study of mixed-oxide catalysts containing
bismuth, vanadium and antimony. Preparation, phase composition,
spectroscopic characterization and catalytic oxidation of propene,
J. Chem. Soc. Faraday Trans. I 79(9), 2055–2069 (1983),
http://dx.doi.org/10.1039/f19837902055
[32] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E.
Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy
(Perkin–Elmer Corporation, Physical Electronics Division, 1979)
[33] F.J. Berry, M.E. Brett, R.A. Marbrow, and W.R. Patterson, An
X-ray photoelectron spectroscopic study of the surface properties of
vanadium antimonate and β-antimony tetroxide, J. Chem. Soc.
Dalton Trans., No. 5, 985–987 (1984)
[34] V.I. Nefedov, M.N. Firsov, and I.S. Shaplygin, Electronic
structures of MRhO2, MRh2O4, RhMO4
and Rh2MO6 on the basis of X-ray spectroscopy
and ESCA data, J. Electron Spectrosc. Related Phenom. 26(1),
65–78 (1982),
http://dx.doi.org/10.1016/0368-2048(82)87006-0
[35] S. Hashimoto, K. Hirokawa, Y. Fukuda, K. Suzuki, T. Suzuki, N.
Usuki, N. Gennai, S. Yoshida, M. Koda, H. Sezaki, H. Horie, A.
Tanaka, and T. Ohtsubo, Correction of peak shift and classification
of change of X-ray photoelectron spectra of oxides as a result of
ion sputtering, Surf. Interf. Analysis 18(12), 799–806
(1992),
http://dx.doi.org/10.1002/sia.740181204
[36] J. Bullot, P. Cordier, O. Gallais, M. Gauthier, and J. Livage,
Thin layers deposited from V2O5 gels: I. A
conductivity study, J. Non-Cryst. Solids 68(1), 123–134
(1984),
http://dx.doi.org/10.1016/0022-3093(84)90039-5
[37] J. Livage, Synthesis of polyoxovanadates via "chimie douce",
Coordination Chem. Rev. 178–180(2), 999–1018 (1998),
http://dx.doi.org/10.1016/S0010-8545(98)00105-2
[38] V. Bondarenko, S. Kaciulis, A. Plesanovas, V. Volkov, and G.
Zacharova, Photoelectron spectroscopy of the poly-vanadium
transition metal acids, Appl. Surf. Sci. 78(1), 107–112
(1994),
http://dx.doi.org/10.1016/0169-4332(94)90038-8
[39] V. Bondarenka, H. Tvardauskas, S. Grebinskij, S. Mickevicius,
Z. Martunas, V. Volkov, and G. Zakharova, Ion beam induced
preferential removal of oxygen from vanadium hydrates, Nucl.
Instrum. Methods B 178(1–4), 323–326 (2001),
http://dx.doi.org/10.1016/S0168-583X(00)00495-X
[40] V. Bondarenka, S. Grebinskij, S. Mickevičius, H. Tvardauskas,
Z. Martūnas, V. Volkov, and G. Zakharova, Humidity sensors based on
H2V11TiO30.3·nH2O
xerogels, Sensors Actuators B 55(1), 60–64 (1999),
http://dx.doi.org/10.1016/S0925-4005(99)00041-6
[41] T. Yao, Y. Oka, and N. Yamamoto, Layered structures of hydrated
vanadium oxides. Part 1. – Alkali-metal intercalates A0.3V2O5·nH2O
(A = Na, K, Rb, Cs and NH4), J. Mater. Chem. 2(3),
331–336 (1992),
http://dx.doi.org/10.1039/JM9920200331
[42] V. Bondarenka, S. Mickevičius, H. Tvardauskas, S. Grebinskij,
S. Kačiulis, G. Mattogno, V. Volkov, and G. Zakharova, X-ray
photoelectron spectroscopy of NaxV2O5
(β) bronze, Lithuanian J. Phys. 40(5), 353–355 (2000)
[43] T. Yao, Y. Oka, and N. Yamamoto, Layered structures of hydrated
vanadium oxides. Part 2. – Vanadyl intercalates (VO)xV2O5·nH2O,
J. Mater. Chem. 2(3), 337–340 (1992),
http://dx.doi.org/10.1039/JM9920200337
[44] S. Mickevičius, V. Bondarenka, S. Grebinskij, S. Kačiulis, H.
Tvardauskas, and Z. Martūnas, The study of dehydration of H2V11.5Cr0.5O31·nH2O
xerogel by XPS and TDS, Lithuanian J. Phys. 42(2), 127–130
(2002)
[45] V. Bondarenka, Z. Martūnas, S. Kačiulis, L. Pandolfi, S.
Grebinskij, and S. Mickevičius, Influence of UV radiation on the
vanadium ions in vanadium hydrates, Lithuanian J. Phys. 42(4),
281–284 (2002)
[46] V. Bondarenka, Sol–gel technology: Vanadium compounds, in: Proceedings
of Conference 'Lithuanian Science and Industry; Applied Physics'
(Kaunas, Lithuania, 2004) pp. 29–30
[47] V.L. Volkov, G.S. Zakharova, and A.A. Ivakin, Synthesis and
properties of hydrated polyvanadomolybdic acid, Zh. Neorg. Khim.
[Russian J. Inorg. Chem.] 30(3), 642–645 (1985)
[48] G.S. Zakharova and V.L. Volkov, Intercalation compounds based
on vanadium oxide (V) xerogel, Usp. Khim. [Russ. Adv. Chem.] 72(4),
346–362 (2003)
[49] V.L. Volkov, G.S. Zakharova, and V. Bondarenka, Xerogels of
Simple and Modificated Polyvanadates (Ural Branch of the
Russian Academy of Sciences, Yekaterinburg, 2001) [in Russian]
[50] N. Soga and M. Senna, Change in the dehydration and
crystallization processes of V2O5 xerogel due
to mechanical pretreatment, J. Solid State Chem. 107(1),
159–165 (1993),
http://dx.doi.org/10.1006/jssc.1993.1333
[51] J.H. Scofield, Hartree–Slater subshell photoionization
cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. Related
Phenom. 8(2), 129–137 (1976),
http://dx.doi.org/10.1016/0368-2048(76)80015-1