[PDF]    http://dx.doi.org/10.3952/lithjphys.47309

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 333–342 (2007)


VALENCE OF VANADIUM IN HYDRATED COMPOUNDS*
V. Bondarenkaa, S. Grebinskija, S. Mickevičiusa, H. Tvardauskasa, S. Kačiulisb, V. Volkovc, G. Zakharovac, and A. Pašiškevičiusa
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: bond@pfi.lt
bInstitute for the Study of Nanostructured Materials (ISMN-CNR), P.O. Box 10, I-00016 Monterotondo Scalo (RM), Italy
E-mail: saulius.kaciulis@mlib.cnr.it
cInstitute of Solid State Chemistry, Pervomaiskaya 91, 620219, Yekaterinburg, Russia
E-mail: volkov@ihim.uran.ru

Received 14 June 2007; revised 2 July 2007

Problems of the definition of vanadium chemical states in the mixed valency compounds are examined. The statistical analysis of the literature data on the values of binding energy and full width at half maximum (FWHM) of V 2p3/2 peaks in different vanadium oxides is carried out.
X-ray photoelectron spectroscopy was used to determine the chemical shift and FWHM of V 2p peaks of V4+ and V5+ cations in the vanadium pentoxide matrix of hydrated vanadium compounds HV12O31·nH2O and (VO)V12O31·nH2O, prepared by using sol–gel technology. It was found that the binding energy of V4+ ions shifts to the lower energy side of about 1.3 eV as compared to the main V5+ ions in the matrix. The V 2p3/2 line width for tetra-valent vanadium ions in xerogels is actually the same as for penta-valent ions.
Keywords: sol–gel method, XPS, vanadium oxides
PACS: 81.20.FW, 79.60.-i, 82.80.Pv
*The report presented at the 37th Lithuanian National Physics Conference, 11–13 June 2007, Vilnius, Lithuania.


VANADŽIO VALENTINGUMAS HIDRATUOTUOSE JUNGINIUOSE
V. Bondarenkaa, S. Grebinskija, S. Mickevičiusa, H. Tvardauskasa, S. Kačiulisb, V. Volkovc, G. Zakharovac, A. Pašiškevičiusa
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bNanostruktūrinių medžiagų tyrimo institutas, Roma, Italija
cKietojo kūno chemijos institutas, Jekaterinburgas, Rusija

Analizuojama cheminė daugiavalenčių vanadžio junginių sandara. Atlikta V 2p3/2 smailių ryšio energijos ir jų puspločio įvairiuose vanadžio oksiduose literatūrinių duomenų statistinė analizė. Rentgeno fotoelektronų spektroskopijos (RFS) metodu buvo tirti hidratuoti vanadžio pentoksido HV12O31·nH2O ir (VO)V12O31·nH2O bandiniai, pagaminti taikant standartinę zolio ir gelio technologiją. Nustatyta, kad V4+ jonų ryšio energija (RE), lyginant su pagrindinių matricos V5+ jonų RE, pasislinkusi į mažesnių energijos verčių pusę maždaug per 1,3 eV, o abiejų jonų smailių puspločiai yra vienodi.


References / Nuorodos


[1] S. Briggs and M.P. Seah, Practical Surface Analysis, Vol. 1 (Wiley, New York, 1990)
[2] J.F. Moulder, W.F. Stricle, P.E. Sobol, and K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin–Elmer Corporation, Physical Electronics Division, 1995)
[3] M. Demeter, M. Neumann, and W. Reichelt, Mixed-valence vanadium oxides studied by XPS, Surf. Sci. 454–456(18), 41–44 (2000),
http://dx.doi.org/10.1016/S0039-6028(00)00111-4
[4] V. Bondarenka, Z. Martunas, S. Kaciulis, and L. Pandolfi, Sol–gel synthesis and XPS characterization of sodium–vanadium oxide bronze thin films, J. Electron Spectrosc. Related Phenom. 131–132(1), 99–103 (2003),
http://dx.doi.org/10.1016/S0368-2048(03)00110-5
[5] G.A. Sawatzky and D. Post, X-ray photoelectron and Auger spectroscopy study of some vanadium oxides, Phys. Rev. B 20(4), 1546–1555 (1979),
http://dx.doi.org/10.1103/PhysRevB.20.1546
[6] C. Malitesta, L. Sabbatini, L. Torsi, P.G. Zambonin, D. Ballivet-Tkatchenko, J. Galy, J.-L. Parize, and J.M. Savariault, Copper speciation by analytical electron spectroscopies: Case of the intercalation phase Cu0.5V2O5·0.5H2O, Surf. Interf. Analysis 19(1–12), 513–518 (1992)
[7] M.P. Casaletto, L. Lisi, G. Mattogno, P. Patrono, G. Ruoppolo, and G. Russo, Oxidative dehydrogenation of ethane on γ-Al2O3 supported vanadyl and iron vanadyl phosphates: Physico-chemical characterisation and catalytic activity, Appl. Catalysis A 226(1–2), 41–48 (2002),
http://dx.doi.org/10.1016/S0926-860X(01)00881-X
[8] J. Medialdua, R. Casanova, and Y. Barbaux, XPS studies of V2O5, V6O13, VO2 and V2O3, J. Electron Spectrosc. Related Phenom. 71(3), 249–261 (1995),
http://dx.doi.org/10.1016/0368-2048(94)02291-7
[9] Z. Zhang and V.E. Henrich, Electronic interactions in the vanadium / TiO2(110) and vanadia / TiO2(110) model catalyst systems, Surf. Sci. 277(3), 263–272 (1992),
http://dx.doi.org/10.1016/0039-6028(92)90767-Z
[10] G. Hopfengartner, D. Borgmann, I. Rademacher, G. Wedler, E. Hums, and G.W. Spitznagel, XPS studies of oxidic model catalysts: Internal standards and oxidation numbers, J. Electron Spectrosc. Related Phenom. 63(2), 91–116 (1993),
http://dx.doi.org/10.1016/0368-2048(93)80042-K
[11] S.L.T. Andersson, ESCA investigation of V2O5+TiO2 catalysts for the vapour phase oxidation of alkylpyridines, J. Chem. Soc. Faraday Trans. I 75, 1356–1370 (1979),
http://dx.doi.org/10.1039/f19797501356
[12] J. Cui, D. Da, and W. Jiang, Structure characterization of vanadium oxide thin films prepared by magnetron sputtering methods, Appl. Surf. Sci. 133(3), 225–229 (1998),
http://dx.doi.org/10.1016/S0169-4332(98)00201-3
[13] R. Holm and S. Storp, ESCA studies of chemical shifts for metal oxides, Appl. Phys. A 9(3), 217–222 (1976),
http://dx.doi.org/10.1007/bf00900608
[14] R.J. Colton, A.M. Guzman, and J.W. Rabalais, Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy, J. Appl. Phys. 49(1), 409–416 (1978),
http://dx.doi.org/10.1063/1.324349
[15] B. Horvath, J. Strutz, J. Geyer-Lippmann, and E.G. Horvath, Preparation, properties, and ESCA characterization of vanadium surface compounds on silicagel. II, Z. Anorg. Allg. Chem. 483(12), 193–204 (1981),
http://dx.doi.org/10.1002/zaac.19814831224
[16] G. Blaauw, F. Leenhouts, F. van der Woude, and G.A. Sawatsky, The metal–non-metal transition in VO2: X-ray photoemission and resistivity measurements, J. Phys. C 8(4), 459–468 (1975),
http://dx.doi.org/10.1088/0022-3719/8/4/014
[17] J. Kasperkiewicz, J.A. Kovacich, and D. Lichtman, XPS studies of vanadium and vanadium oxides, J. Electron Spectrosc. Related Phenom. 32(2), 123–132 (1983),
http://dx.doi.org/10.1016/0368-2048(83)85090-7
[18] V. Bondarenka, S. Grebinskij, S. Kačiulis, G. Mattogno, and S. Mickevičius, Surface chemical composition of MV10Mo2O31·nH2O (M = Na2, K2, Ca, Sr, Cu) xerogels, J. Electron Spectrosc. Related Phenom. 107(3), 253–259 (2000),
http://dx.doi.org/10.1016/S0368-2048(00)00152-3
[19] S. Lu, L. Hou, and F. Gan, Preparation and optical properties of phase-change VO2 thin films, J. Mater. Sci. 28(8), 2169–2177 (1993),
http://dx.doi.org/10.1007/BF00367579
[20] A.I. Minyaev, I.A. Denisov, V.E. Soroko, and V.A. Konovalov, Study of solid phase transformation of vanadium based systems, Zh. Prikl. Khim. [Russ. J. Appl. Chem.] 59(2), 339–343 (1986)
[21] Present paper
[22] M.P. Casaletto, S. Kaciulis, L. Lisi, G. Mattogno, A. Mezzi, P. Patrono, and G. Ruoppolo, XPS characterisation of iron-modified vanadyl phosphate catalysts, Appl. Catalysis A 218(1–2), 129–137 (2001),
http://dx.doi.org/10.1016/S0926-860X(01)00628-7
[23] R. Larsson, B. Folkesson, and G. Schoen, X-ray photoelectron spectroscopy and homogenous catalysis. 1. Investigations on some vanadium compounds, Chem. Scr. 3(2), 88–90 (1973)
[24] B. Barbaray, J.P. Contour, and G. Mouvier, Effects of nitrogen dioxide and water vapour on oxidation of sulphur dioxide over vanadium pentoxide particles, Env. Sci. Technol. 12(12), 1294–1297 (1978),
http://dx.doi.org/10.1021/es60147a012
[25] M. Takagi-Kawai, M. Soma, T. Onishi, and K. Tamaru, The adsorption and the reaction of NH3 and NOx on supported V2O5 catalysts: Effect of supporting materials, Canadian J. Chem. 58(20), 2132–2137 (1980),
http://dx.doi.org/10.1139/v80-340
[26] W.E. Slinkard and P.B. Degroot, Vanadium–titanium oxide catalysts for oxidation of butene to acetic acid, J. Catalysis 68(2), 423–432 (1981),
http://dx.doi.org/10.1016/0021-9517(81)90113-5
[27] Z. Zhang and V.E. Henrich, Surface electronic structure of V2O5(001): Defect states and chemisorption, Surf. Sci. 321(1–2), 133–144 (1994),
http://dx.doi.org/10.1016/0039-6028(94)90034-5
[28] J.L.G. Fierro, L.A. Arrua, J.M.L. Nieto, and G. Kremenic, Surface properties of co-precipitated V–Ti–O catalysts and their relation to the selective oxidation of isobutene, Appl. Catalysis 37(1–2), 323–338 (1988),
http://dx.doi.org/10.1016/S0166-9834(00)80770-8
[29] A. Meisel, K.H. Hallmeier, R. Szargan, J. Muller, and W. Schneider, Investigation of soft X-ray emission and K-edge absorption spectra of V2O5 and LixV2O5 electrodes, Phys. Scripta 41(4), 513–516 (1990),
http://dx.doi.org/10.1088/0031-8949/41/4/031
[30] V.I. Nefedov, Y.V. Salyn, G. Leonhardt, and R. Scheibe, A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy, J. Electron Spectrosc. Related Phenom. 10(2), 121–124 (1977),
http://dx.doi.org/10.1016/0368-2048(77)85010-X
[31] Y. Schuhl, H. Baussart, R. Delobel, M. Le Bras, J. Leroy, L.G. Gengembre, and J. Rimblot, Study of mixed-oxide catalysts containing bismuth, vanadium and antimony. Preparation, phase composition, spectroscopic characterization and catalytic oxidation of propene, J. Chem. Soc. Faraday Trans. I 79(9), 2055–2069 (1983),
http://dx.doi.org/10.1039/f19837902055
[32] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy (Perkin–Elmer Corporation, Physical Electronics Division, 1979)
[33] F.J. Berry, M.E. Brett, R.A. Marbrow, and W.R. Patterson, An X-ray photoelectron spectroscopic study of the surface properties of vanadium antimonate and β-antimony tetroxide, J. Chem. Soc. Dalton Trans., No. 5, 985–987 (1984)
[34] V.I. Nefedov, M.N. Firsov, and I.S. Shaplygin, Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data, J. Electron Spectrosc. Related Phenom. 26(1), 65–78 (1982),
http://dx.doi.org/10.1016/0368-2048(82)87006-0
[35] S. Hashimoto, K. Hirokawa, Y. Fukuda, K. Suzuki, T. Suzuki, N. Usuki, N. Gennai, S. Yoshida, M. Koda, H. Sezaki, H. Horie, A. Tanaka, and T. Ohtsubo, Correction of peak shift and classification of change of X-ray photoelectron spectra of oxides as a result of ion sputtering, Surf. Interf. Analysis 18(12), 799–806 (1992),
http://dx.doi.org/10.1002/sia.740181204
[36] J. Bullot, P. Cordier, O. Gallais, M. Gauthier, and J. Livage, Thin layers deposited from V2O5 gels: I. A conductivity study, J. Non-Cryst. Solids 68(1), 123–134 (1984),
http://dx.doi.org/10.1016/0022-3093(84)90039-5
[37] J. Livage, Synthesis of polyoxovanadates via "chimie douce", Coordination Chem. Rev. 178–180(2), 999–1018 (1998),
http://dx.doi.org/10.1016/S0010-8545(98)00105-2
[38] V. Bondarenko, S. Kaciulis, A. Plesanovas, V. Volkov, and G. Zacharova, Photoelectron spectroscopy of the poly-vanadium transition metal acids, Appl. Surf. Sci. 78(1), 107–112 (1994),
http://dx.doi.org/10.1016/0169-4332(94)90038-8
[39] V. Bondarenka, H. Tvardauskas, S. Grebinskij, S. Mickevicius, Z. Martunas, V. Volkov, and G. Zakharova, Ion beam induced preferential removal of oxygen from vanadium hydrates, Nucl. Instrum. Methods B 178(1–4), 323–326 (2001),
http://dx.doi.org/10.1016/S0168-583X(00)00495-X
[40] V. Bondarenka, S. Grebinskij, S. Mickevičius, H. Tvardauskas, Z. Martūnas, V. Volkov, and G. Zakharova, Humidity sensors based on H2V11TiO30.3·nH2O xerogels, Sensors Actuators B 55(1), 60–64 (1999),
http://dx.doi.org/10.1016/S0925-4005(99)00041-6
[41] T. Yao, Y. Oka, and N. Yamamoto, Layered structures of hydrated vanadium oxides. Part 1. – Alkali-metal intercalates A0.3V2O5·nH2O (A = Na, K, Rb, Cs and NH4), J. Mater. Chem. 2(3), 331–336 (1992),
http://dx.doi.org/10.1039/JM9920200331
[42] V. Bondarenka, S. Mickevičius, H. Tvardauskas, S. Grebinskij, S. Kačiulis, G. Mattogno, V. Volkov, and G. Zakharova, X-ray photoelectron spectroscopy of NaxV2O5 (β) bronze, Lithuanian J. Phys. 40(5), 353–355 (2000)
[43] T. Yao, Y. Oka, and N. Yamamoto, Layered structures of hydrated vanadium oxides. Part 2. – Vanadyl intercalates (VO)xV2O5·nH2O, J. Mater. Chem. 2(3), 337–340 (1992),
http://dx.doi.org/10.1039/JM9920200337
[44] S. Mickevičius, V. Bondarenka, S. Grebinskij, S. Kačiulis, H. Tvardauskas, and Z. Martūnas, The study of dehydration of H2V11.5Cr0.5O31·nH2O xerogel by XPS and TDS, Lithuanian J. Phys. 42(2), 127–130 (2002)
[45] V. Bondarenka, Z. Martūnas, S. Kačiulis, L. Pandolfi, S. Grebinskij, and S. Mickevičius, Influence of UV radiation on the vanadium ions in vanadium hydrates, Lithuanian J. Phys. 42(4), 281–284 (2002)
[46] V. Bondarenka, Sol–gel technology: Vanadium compounds, in: Proceedings of Conference 'Lithuanian Science and Industry; Applied Physics' (Kaunas, Lithuania, 2004) pp. 29–30
[47] V.L. Volkov, G.S. Zakharova, and A.A. Ivakin, Synthesis and properties of hydrated polyvanadomolybdic acid, Zh. Neorg. Khim. [Russian J. Inorg. Chem.] 30(3), 642–645 (1985)
[48] G.S. Zakharova and V.L. Volkov, Intercalation compounds based on vanadium oxide (V) xerogel, Usp. Khim. [Russ. Adv. Chem.] 72(4), 346–362 (2003)
[49] V.L. Volkov, G.S. Zakharova, and V. Bondarenka, Xerogels of Simple and Modificated Polyvanadates (Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2001) [in Russian]
[50] N. Soga and M. Senna, Change in the dehydration and crystallization processes of V2O5 xerogel due to mechanical pretreatment, J. Solid State Chem. 107(1), 159–165 (1993),
http://dx.doi.org/10.1006/jssc.1993.1333
[51] J.H. Scofield, Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. Related Phenom. 8(2), 129–137 (1976),
http://dx.doi.org/10.1016/0368-2048(76)80015-1