[PDF]    http://dx.doi.org/10.3952/lithjphys.47316

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 279–288 (2007)


NUMERICAL TREATMENT OF THE TEMPERATURE DISTRIBUTION IN END-PUMPED COMPOSITE LASER RODS
A.S. Dement’eva, A. Jovaišaa, K. Račkaitisa, F. Ivanauskasb, and J. Dabulytė-Bagdonavičienėb
aLaboratory of Nonlinear Optics and Spectroscopy, Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: aldement@ktl.mii.lt
bDepartment of Computer Science, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

Received 20 June 2007

Analytical and numerical studies of the thermal characteristics of conventional and composite laser rods in laser-diode end-pumped geometry are reported in detail using Nd:YAG rods as an example. It has been shown that taking into account the temperature dependence of the heat conductivity, the change of the temperature in the active element can be significantly higher compared to the data for the temperature-independent heat conductivity coefficient. It has been found that the dependence of heat conductivity on temperature causes the non-parabolic heat distribution even in the region inside the pump beam with the top hat intensity distribution. It has also been shown by direct numerical simulations that the undoped entrance section of the composite rod significantly reduces the peak temperature rise inside the crystal.
Keywords: diode-pump solid-state lasers, composite rod, thermal effects
PACS: 42.15.Eq, 42.55.Rz, 42.60.By, 44.10.+i


TEMPERATŪROS SKIRSTINIO IŠILGINIO KAUPINIMO KOMPOZITINIUOSE LAZERIO STRYPUOSE SKAITINIS TYRIMAS
A.S. Dement’eva, A. Jovaišaa, K. Račkaitisa, F. Ivanauskasb, J. Dabulytė-Bagdonavičienėb
aFizikos institutas, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva

Analitiškai bei skaitmeniškai modeliuojami šiluminiai reiškiniai išilgai kaupinamuose Nd:YAG lazerių paprastuose ir kompozitiniuose aktyviuosiuose elementuose. Naudojant sukurtą skaitinę modeliavimo programą, įmanoma stebėti temperatūros skirstinį įvairios formos aktyviuosiuose elementuose bei, esant įvairioms kraštinėms sąlygoms, galima parinkti skirtingas aušinimo temperatūras, šilumos pernašos koeficientus arba kaupinimo sritis. Parodyta, kad dėl šilumos laidumo koeficiento priklausomybės nuo temperatūros lazerio aktyviajame elemente blogiau perduodama šiluma ir temperatūra jame tampa aukštesnė nei lazerio kristale su nepriklausančiu nuo temperatūros šilumos laidumu. Pastebėta, kad, kaupinant lazerio pluoštu su stačiakampiu erdviniu intensyvumo pasiskirstymu, šilumos laidumo priklausomybė nuo temperatūros sukelia neparabolinį šilumos pasiskirstymą net ir kaupinamoje aktyviojo elemento srityje. Dėl to aktyviajame elemente susidaro stipriai aberuotas šiluminis lęšis, kuris blogina generuojamo arba stiprinamo lazerio pluošto kokybę. Tiesioginiu skaitiniu modeliavimu parodyta, kad priekinė kompozitinio elemento dalis be aktyviųjų jonų gali žymiai sumažinti aukščiausią temperatūrą jo centre.


References / Nuorodos


[1] B.R. Belostockii and A.S. Rubanov, Thermal Regime of Solid State Optical Quantum Generators (Energiya, Moscow, 1973) [in Russian]
[2] A.V. Mezenov, L.N. Soms, and A.I. Stepanov, Thermo-Optics of Solid-State Lasers (Mashinostroenie, Leningrad, 1986) [in Russian]
[3] G.M. Zverev and Yu.D. Golyaev, Crystal Lasers and their Application (Radio i Svyaz, Moscow, 1994) [in Russian]
[4] N. Hodgson and H. Weber, Optical Resonators. Fundamentals, Advanced Concepts and Applications (Springer-Verlag, London, 1997)
[5] R. Ifflander, Solid-State Lasers for Materials Processing (Springer-Verlag, Berlin, 2001),
http://dx.doi.org/10.1007/978-3-540-46585-0
[6] W. Koechner and M. Bass, Solid-State Lasers: A Graduate Text (Springer-Verlag, New York, 2003)
[7] W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer-Verlag, New York, 2006)
[8] R. Weber, B. Neuenschwander, and H.P. Weber, Thermal effects in solid-state laser materials, Opt. Mater. 11(2–3), 245–254 (1999),
http://dx.doi.org/10.1016/S0925-3467(98)00047-0
[9] W.A. Clarkson, Thermal effects and their mitigation in end-pumped solid-state lasers, J. Phys. D 34(16), 2381–2395 (2001),
http://dx.doi.org/10.1088/0022-3727/34/16/302
[10] S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, Thermal lensing in diode-pumped ytterbium lasers, part I: Theoretical analysis and wavefront measurements, IEEE J. Quantum Electron. 40(9), 1217–1234 (2004),
http://dx.doi.org/10.1109/JQE.2004.833198
[11] S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, Thermal lensing in diode-pumped ytterbium lasers, part II: Evaluation of quantum efficiencies and thermo-optic coefficients, IEEE J. Quantum Electron. 40(9), 1235–1243 (2004),
http://dx.doi.org/10.1109/JQE.2004.833203
[12] S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, On thermal effects in solid-state lasers: The case of ytterbium-doped materials, Prog. Quantum Electron. 30(4), 89–153 (2006),
http://dx.doi.org/10.1016/j.pquantelec.2006.12.001
[13] U.O. Farrukh, A.M. Buoncristiani, and C.E. Byvik, An analysis of the temperature distribution in finite solid-state laser rods, IEEE J. Quantum Electron. 24(11), 2253–2263 (1988),
http://dx.doi.org/10.1109/3.8568
[14] B.A. Usievich, V.A. Sychugov, F. Pigeon, and A. Tishchenko, Analytical treatment of the thermal problem in axially pumped solid-state lasers, IEEE J. Quantum Electron. 37(9), 1210–1214 (2001),
http://dx.doi.org/10.1109/3.945327
[15] R.G. Beausoleil, E.K. Gustafson, M.M. Fejer, E. D'Ambrosio, W. Kells, and J. Camp, Model of thermal wave-front distortion in interferometric gravitational-wave detectors. I. Thermal focusing, J. Opt. Soc. Am. B 20(6), 1247–1268 (2003),
http://dx.doi.org/10.1364/JOSAB.20.001247
[16] M.E. Innocenzi, H.T. Yura, C.L. Fincher, and R.A. Fields, Thermal modeling of continuous-wave end-pumped solid-state lasers, Appl. Phys. Lett. 56(19), 1831–1833 (1990),
http://dx.doi.org/10.1063/1.103083
[17] A.K. Cousins, Temperature and thermal stress scaling in finite-length end-pumped laser rods, IEEE J. Quantum Electron. 28(4), 1057–1069 (1992),
http://dx.doi.org/10.1109/3.135228
[18] M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry, IEEE J. Select. Topics Quantum Electron. 3(1), 9–18 (1997),
http://dx.doi.org/10.1109/2944.585807
[19] M. Tsunekane, N. Taguchi, and H. Inaba, Improvement of thermal effects in a diode-end-pumped, composite Tm : YAG rod with undoped ends, Appl. Opt. 38(9), 1788–1791 (1999),
http://dx.doi.org/10.1364/AO.38.001788
[20] Z. Xiong, Z.G. Li, N. Moore, W.L. Huang, and G.C. Lim, Detailed investigation of thermal effects in longitudinally diode-pumped Nd : YVO4 lasers, IEEE J. Quantum Electron. 39(8), 979–986 (2003),
http://dx.doi.org/10.1109/JQE.2003.814371
[21] N. Hodgson and H. Weber, Influence of spherical aberration of the active medium on the performance of Nd : YAG lasers, IEEE J. Quantum Electron. 29(9), 2497–2507 (1993),
http://dx.doi.org/10.1109/3.247707
[22] R. Buzelis, A. Dement'ev, J. Kosenko, E. Murauskas, R. Vaicekauskas, and F. Ivanauskas, Amplification efficiency and quality alteration of short pulses amplified in the Nd : YAG amplifier in the saturation mode, Lithuanian Phys. J. 38(4), 289–301 (1998)
[23] D.C. Brown, Ultrahigh-average-power diode-pumped Nd : YAG and Yb : YAG lasers, IEEE J. Quantum Electron. 33(5), 861–873 (1997),
http://dx.doi.org/10.1109/3.572162
[24] D.C. Brown, Nonlinear thermal distortion in YAG rod amplifiers, IEEE J. Quantum Electron. 34(12), 2383–2392 (1998),
http://dx.doi.org/10.1109/3.736113
[25] A.M. Bonnefois, M. Gilbert, P.Y. Thro, and J.M. Weulersse, Thermal lensing and spherical aberration in high-power transversally pumped laser rods, Opt. Commun. 259(1), 223–235 (2006),
http://dx.doi.org/10.1016/j.optcom.2005.08.041
[26] H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford University Press, UK, 1959)
[27] A.A. Samarskii and P.N. Vabishchevich, Numerical Heat Transfer (Editorial URSS, Moscow, 2003) [in Russian]
[28] H.D. Baehr and K. Stephan, Heat and Mass Transfer, 2nd ed. (Springe-Verlag, Berlin, 2006),
http://dx.doi.org/10.1007/3-540-29527-5
[29] A. Lucianetti, Th. Graf, R. Weber, and H.P. Weber, Thermo-optical properties of transversely pumped composite YAG rods with Nd-doped core, IEEE J. Quantum Electron. 36(2), 220–227 (2000),
http://dx.doi.org/10.1109/3.823468
[30] M. Schmid, Th. Graf, and H.P. Weber, Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating, J. Opt. Soc. Am. B 17(8), 1398–1404 (2000),
http://dx.doi.org/10.1364/JOSAB.17.001398