[PDF]
http://dx.doi.org/10.3952/lithjphys.47316
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 279–288 (2007)
NUMERICAL TREATMENT OF THE
TEMPERATURE DISTRIBUTION IN END-PUMPED COMPOSITE LASER RODS
A.S. Dement’eva, A. Jovaišaa, K. Račkaitisa,
F. Ivanauskasb, and J. Dabulytė-Bagdonavičienėb
aLaboratory of Nonlinear Optics and Spectroscopy,
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: aldement@ktl.mii.lt
bDepartment of Computer Science, Vilnius University,
Naugarduko 24, LT-03225 Vilnius, Lithuania
Received 20 June 2007
Analytical and numerical studies
of the thermal characteristics of conventional and composite laser
rods in laser-diode end-pumped geometry are reported in detail
using Nd:YAG rods as an example. It has been shown that taking
into account the temperature dependence of the heat conductivity,
the change of the temperature in the active element can be
significantly higher compared to the data for the
temperature-independent heat conductivity coefficient. It has been
found that the dependence of heat conductivity on temperature
causes the non-parabolic heat distribution even in the region
inside the pump beam with the top hat intensity distribution. It
has also been shown by direct numerical simulations that the
undoped entrance section of the composite rod significantly
reduces the peak temperature rise inside the crystal.
Keywords: diode-pump solid-state lasers,
composite rod, thermal effects
PACS: 42.15.Eq, 42.55.Rz, 42.60.By, 44.10.+i
TEMPERATŪROS SKIRSTINIO
IŠILGINIO KAUPINIMO KOMPOZITINIUOSE LAZERIO STRYPUOSE SKAITINIS
TYRIMAS
A.S. Dement’eva, A. Jovaišaa, K.
Račkaitisa, F. Ivanauskasb, J.
Dabulytė-Bagdonavičienėb
aFizikos institutas, Vilnius, Lietuva
bVilniaus universitetas, Vilnius, Lietuva
Analitiškai bei skaitmeniškai modeliuojami
šiluminiai reiškiniai išilgai kaupinamuose Nd:YAG lazerių
paprastuose ir kompozitiniuose aktyviuosiuose elementuose.
Naudojant sukurtą skaitinę modeliavimo programą, įmanoma stebėti
temperatūros skirstinį įvairios formos aktyviuosiuose elementuose
bei, esant įvairioms kraštinėms sąlygoms, galima parinkti
skirtingas aušinimo temperatūras, šilumos pernašos koeficientus
arba kaupinimo sritis. Parodyta, kad dėl šilumos laidumo
koeficiento priklausomybės nuo temperatūros lazerio aktyviajame
elemente blogiau perduodama šiluma ir temperatūra jame tampa
aukštesnė nei lazerio kristale su nepriklausančiu nuo temperatūros
šilumos laidumu. Pastebėta, kad, kaupinant lazerio pluoštu su
stačiakampiu erdviniu intensyvumo pasiskirstymu, šilumos laidumo
priklausomybė nuo temperatūros sukelia neparabolinį šilumos
pasiskirstymą net ir kaupinamoje aktyviojo elemento srityje. Dėl
to aktyviajame elemente susidaro stipriai aberuotas šiluminis
lęšis, kuris blogina generuojamo arba stiprinamo lazerio pluošto
kokybę. Tiesioginiu skaitiniu modeliavimu parodyta, kad priekinė
kompozitinio elemento dalis be aktyviųjų jonų gali žymiai
sumažinti aukščiausią temperatūrą jo centre.
References / Nuorodos
[1] B.R. Belostockii and A.S. Rubanov, Thermal Regime of Solid
State Optical Quantum Generators (Energiya, Moscow, 1973) [in
Russian]
[2] A.V. Mezenov, L.N. Soms, and A.I. Stepanov, Thermo-Optics of
Solid-State Lasers (Mashinostroenie, Leningrad, 1986) [in
Russian]
[3] G.M. Zverev and Yu.D. Golyaev, Crystal Lasers and their
Application (Radio i Svyaz, Moscow, 1994) [in Russian]
[4] N. Hodgson and H. Weber, Optical Resonators. Fundamentals,
Advanced Concepts and Applications (Springer-Verlag, London,
1997)
[5] R. Ifflander, Solid-State Lasers for Materials Processing
(Springer-Verlag, Berlin, 2001),
http://dx.doi.org/10.1007/978-3-540-46585-0
[6] W. Koechner and M. Bass, Solid-State Lasers: A Graduate Text
(Springer-Verlag, New York, 2003)
[7] W. Koechner, Solid-State Laser Engineering, 6th ed.
(Springer-Verlag, New York, 2006)
[8] R. Weber, B. Neuenschwander, and H.P. Weber, Thermal effects in
solid-state laser materials, Opt. Mater. 11(2–3), 245–254
(1999),
http://dx.doi.org/10.1016/S0925-3467(98)00047-0
[9] W.A. Clarkson, Thermal effects and their mitigation in
end-pumped solid-state lasers, J. Phys. D 34(16), 2381–2395
(2001),
http://dx.doi.org/10.1088/0022-3727/34/16/302
[10] S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P.
Georges, Thermal lensing in diode-pumped ytterbium lasers, part I:
Theoretical analysis and wavefront measurements, IEEE J. Quantum
Electron. 40(9), 1217–1234 (2004),
http://dx.doi.org/10.1109/JQE.2004.833198
[11] S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P.
Georges, Thermal lensing in diode-pumped ytterbium lasers, part II:
Evaluation of quantum efficiencies and thermo-optic coefficients,
IEEE J. Quantum Electron. 40(9), 1235–1243 (2004),
http://dx.doi.org/10.1109/JQE.2004.833203
[12] S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges,
On thermal effects in solid-state lasers: The case of
ytterbium-doped materials, Prog. Quantum Electron. 30(4),
89–153 (2006),
http://dx.doi.org/10.1016/j.pquantelec.2006.12.001
[13] U.O. Farrukh, A.M. Buoncristiani, and C.E. Byvik, An analysis
of the temperature distribution in finite solid-state laser rods,
IEEE J. Quantum Electron. 24(11), 2253–2263 (1988),
http://dx.doi.org/10.1109/3.8568
[14] B.A. Usievich, V.A. Sychugov, F. Pigeon, and A. Tishchenko,
Analytical treatment of the thermal problem in axially pumped
solid-state lasers, IEEE J. Quantum Electron. 37(9),
1210–1214 (2001),
http://dx.doi.org/10.1109/3.945327
[15] R.G. Beausoleil, E.K. Gustafson, M.M. Fejer, E. D'Ambrosio, W.
Kells, and J. Camp, Model of thermal wave-front distortion in
interferometric gravitational-wave detectors. I. Thermal focusing,
J. Opt. Soc. Am. B 20(6), 1247–1268 (2003),
http://dx.doi.org/10.1364/JOSAB.20.001247
[16] M.E. Innocenzi, H.T. Yura, C.L. Fincher, and R.A. Fields,
Thermal modeling of continuous-wave end-pumped solid-state lasers,
Appl. Phys. Lett. 56(19), 1831–1833 (1990),
http://dx.doi.org/10.1063/1.103083
[17] A.K. Cousins, Temperature and thermal stress scaling in
finite-length end-pumped laser rods, IEEE J. Quantum Electron.
28(4), 1057–1069 (1992),
http://dx.doi.org/10.1109/3.135228
[18] M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba,
Analytical and experimental studies on the characteristics of
composite solid-state laser rods in diode-end-pumped geometry, IEEE
J. Select. Topics Quantum Electron. 3(1), 9–18 (1997),
http://dx.doi.org/10.1109/2944.585807
[19] M. Tsunekane, N. Taguchi, and H. Inaba, Improvement of thermal
effects in a diode-end-pumped, composite Tm : YAG rod with undoped
ends, Appl. Opt. 38(9), 1788–1791 (1999),
http://dx.doi.org/10.1364/AO.38.001788
[20] Z. Xiong, Z.G. Li, N. Moore, W.L. Huang, and G.C. Lim, Detailed
investigation of thermal effects in longitudinally diode-pumped Nd :
YVO4 lasers, IEEE J. Quantum Electron. 39(8), 979–986
(2003),
http://dx.doi.org/10.1109/JQE.2003.814371
[21] N. Hodgson and H. Weber, Influence of spherical aberration of
the active medium on the performance of Nd : YAG lasers, IEEE J.
Quantum Electron. 29(9), 2497–2507 (1993),
http://dx.doi.org/10.1109/3.247707
[22] R. Buzelis, A. Dement'ev, J. Kosenko, E. Murauskas, R.
Vaicekauskas, and F. Ivanauskas, Amplification efficiency and
quality alteration of short pulses amplified in the Nd : YAG
amplifier in the saturation mode, Lithuanian Phys. J. 38(4),
289–301 (1998)
[23] D.C. Brown, Ultrahigh-average-power diode-pumped Nd : YAG and
Yb : YAG lasers, IEEE J. Quantum Electron. 33(5), 861–873
(1997),
http://dx.doi.org/10.1109/3.572162
[24] D.C. Brown, Nonlinear thermal distortion in YAG rod amplifiers,
IEEE J. Quantum Electron. 34(12), 2383–2392 (1998),
http://dx.doi.org/10.1109/3.736113
[25] A.M. Bonnefois, M. Gilbert, P.Y. Thro, and J.M. Weulersse,
Thermal lensing and spherical aberration in high-power transversally
pumped laser rods, Opt. Commun. 259(1), 223–235 (2006),
http://dx.doi.org/10.1016/j.optcom.2005.08.041
[26] H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids,
2nd ed. (Oxford University Press, UK, 1959)
[27] A.A. Samarskii and P.N. Vabishchevich, Numerical Heat
Transfer (Editorial URSS, Moscow, 2003) [in Russian]
[28] H.D. Baehr and K. Stephan, Heat and Mass Transfer, 2nd
ed. (Springe-Verlag, Berlin, 2006),
http://dx.doi.org/10.1007/3-540-29527-5
[29] A. Lucianetti, Th. Graf, R. Weber, and H.P. Weber,
Thermo-optical properties of transversely pumped composite YAG rods
with Nd-doped core, IEEE J. Quantum Electron. 36(2), 220–227
(2000),
http://dx.doi.org/10.1109/3.823468
[30] M. Schmid, Th. Graf, and H.P. Weber, Analytical model of the
temperature distribution and the thermally induced birefringence in
laser rods with cylindrically symmetric heating, J. Opt. Soc. Am. B
17(8), 1398–1404 (2000),
http://dx.doi.org/10.1364/JOSAB.17.001398