[PDF]
http://dx.doi.org/10.3952/lithjphys.47321
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 343–350 (2007)
MODIFICATION OF AMORPHOUS a-C:H
FILMS BY LASER IRRADIATION
A. Grigonisa, Ž. Rutkūnienėa, A. Medvidb,
P. Onufrijevsb, and J. Babonasc
aPhysics Department, Kaunas University of
Technology, Studentų 50, LT-51368 Kaunas, Lithuania
E-mail: zirut@ktu.lt
bRiga Technical University, 14 Azenes St., LV-1048
Riga, Latvia
cSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
Received 20 June 2007
Amorphous diamond-like
hydrogenated carbon films a-C:H were formed on Si wafers by a
direct ion beam deposition method from acetylene or a gas mixture
of acetylene and hydrogen. The samples were irradiated in a
scanning mode by second harmonic (wavelength λ = 532
nm) of a Q-switched YAG:Nd laser. The effect of laser irradiation
was studied by Raman and infrared spectroscopy and spectroscopic
ellipsometry. The changes in the optical spectra of the samples
with different H amount were investigated in the dependence on
laser intensity. Experimental data were interpreted taking into
account the structural transformations of a-C:H films.
Keywords: amorphous diamond-type carbon
films, laser irradiation, optical properties
PACS: 78.66.Jg, 61.80.Ba, 78.20.-e
AMORFINIŲ a-C:H DANGŲ
MODIFIKAVIMAS LAZERIO APŠVITA
A. Grigonisa, Ž. Rutkūnienėa, A. Medvidb,
P. Onufrijevsb, J. Babonasc
aKauno technologijos universitetas, Kaunas, Lietuva
bRygos technologijos universitetas, Ryga,
Latvija
cPuslaidininkių fizikos institutas, Vilnius,
Lietuva
Joniniu spinduliniu nusodinimo metodu acetileno
bei acetileno/vandenilio mišiniuose ant silicio pagrindo buvo
suformuotos amorfinės hidrogenizuotos panãšios į deimantą anglies
dangos (a-C:H). Apšvitai koherentinės šviesos kvantais naudotas
YAG:Nd impulsinis lazeris, kurio impulso trukmė 10 ns,
pasikartojimų dažnis 12,5 Hz, spindulio skersmuo 2,5 mm, skanavimo
žingsnis 25 µm, apšvitos galia 1,8–10,2 MW/cm2.
Lazerio apšvitos įtaka buvo tirta Ramano, infraraudonosios
spektroskopijos bei spektrinės elipsometrijos metodais. Tyrimai
parodė, kad, esant skirtingoms vandenilio koncentracijoms dangose,
jų optiniai spektrai kinta priklausomai nuo lazerio intensyvumo.
Didžiausius pokyčius dėl koherentinės spinduliuotės poveikio
patiria turinčios daug sp2 ryšių, t. y. daug
grafito fazės; jos savo savybėmis artimos panašioms į grafitą
anglies dangoms. Esant tam tikrai apšvitos galiai, kuri priklauso
nuo to, kiek dangoje yra sp3 fazės ir kiek
vandenilio dalyvauja sudarant šią fazę, šios dangos virsta stiklo
anglimi. Taip pat nustatyta, kad lazerio spinduliuotė gali sukelti
SiC bei į deimantą panašių kristalitų susidarymą dangose.
References / Nuorodos
[1] J. Robertson, Improving the properties of diamond-like carbon,
Diamond Relat. Mater. 12, 79–84 (2003),
http://dx.doi.org/10.1016/S0925-9635(03)00006-2
[2] A. von Keudel, T. Schwarz-Selinger, and W. Jakob, Simultaneous
interaction of methyl radicals and atomic hydrogen with amorphous
hydrogenated carbon films, J. Appl. Phys. 89, 2979–2986
(2001),
http://dx.doi.org/10.1063/1.1343894
[3] T.V. Kononenko, S.M. Pimenov, V.V. Kononenko, E.V. Zavedeev,
V.I. Konov, G. Dumitru, and V. Romano, Laser-induced spallation in
diamond-like carbon films, Appl. Phys. A 79, 543–549 (2004),
http://dx.doi.org/10.1007/s00339-003-2356-5
[4] V. Kononenko, V.G. Ralchenko, E.D. Obraztsova, V.I. Konov, E.N.
Loubnin, J. Seth, S.V. Babu, and E.N. Loubnin, Excimer laser etching
of diamond-like carbon films: Spalling effect, Appl. Surf. Sci. 86,
234–238 (1995),
http://dx.doi.org/10.1016/0169-4332(94)00417-X
[5] D. Bäuerle, Laser Processing and Chemistry (Springer,
Berlin, 2000),
http://dx.doi.org/10.1007/978-3-662-04074-4
[6] R. Wachter and A. Cordery, Effects of post-deposition annealing
on different DLC films, Diamond Relat. Mater. 8, 504–509
(1999),
http://dx.doi.org/10.1016/S0925-9635(98)00395-1
[7] W. Hurler, M. Pietralla, and A. Hammershmidt, Determination of
thermal properties of hydrogenated amorphous carbon films via mirage
effect measurements, Diamond Relat. Mater. 4, 954–957
(1995),
http://dx.doi.org/10.1016/0925-9635(94)00259-2
[8] M. Šilinskas, A. Grigonis, G. Dikčius, and H. Manikowski,
Optical and electron paramagnetic resonance studies of hydrogenated
amorphous carbon (a-C:H) thin films formed by direct ion beam
deposition method, Proc. SPIE 4415, 266–271 (2001),
http://dx.doi.org/10.1117/12.425504
[9] A. Grigonis, Ž. Rutkūnienė, V. Kopustinskas, G.J. Babonas, and
A. Rėza, Investigation of optical properties of a-C:H films
deposited from acetylene using direction beam deposition method,
Vacuum 78, 593–597 (2005),
http://dx.doi.org/10.1016/j.vacuum.2005.01.092
[10] G.J. Babonas, A. Niilisk, A. Reza, A. Matulis, and A. Rosental,
Spectroscopic ellipsometry of TiO2/Si, Proc. SPIE 5122,
50–55 (2003),
http://dx.doi.org/10.1117/12.515700
[11] J.G. Buijnsters, P. Shankar, and W. Flescher, CVD diamond
deposition on steel using arc plated chromium nitride interlayers,
Diamond Relat. Mater. 11, 536–544 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00628-8
[12] M. Silinskas and A. Grigonis, Low energy post-growth
irradiation of amorphous hydrogenated carbon (a-C:H) films, Diamond
Relat. Mater. 11, 1026–1030 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00734-8
[13] A. Grigonis, M. Šilinskas, and V. Kopustinskas, Investigation
of ion irradiation effects in a-SixC1–x:H
thin films, Vacuum 68, 257–261 (2003),
http://dx.doi.org/10.1016/S0042-207X(02)00454-2
[14] A. Heiman, E. Lakin, E. Zolotoyabko, and A. Hoffman,
Microstructure and stress in nano-crystalline diamond films
deposited by DC glow discharge CVD, Diamond Relat. Mater. 11,
601–607 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00631-8
[15] G.J. Babonas, A. Rėza, A. Grigonis, D. Tribandis, R.
Tamaševičius, and A. Kindurys, Optical properties of amorphous
hydrogenated carbon films, Lithuanian J. Phys. 44, 457–464
(2004),
http://dx.doi.org/10.3952/lithjphys.44607
[16] http://www.sopra-sa.com
[17] G.E. Jellison and F.A. Modine, Parametrization of the optical
functions of amorphous materials in the interband region, Appl.
Phys. Lett. 69, 371–373 (1996),
http://dx.doi.org/10.1063/1.118064
[18] B. Hong, J. Lee, R.W. Collins, Y. Kuang, W. Drawl, R. Messier,
T.T. Tsong, and Y.E. Strausser, Effects of processing conditions on
the growth of nanocrystalline diamond thin films: Real time
spectroscopic ellipsometry studies, Diamond Relat. Mater. 6,
55–80 (1997),
http://dx.doi.org/10.1016/S0925-9635(96)00591-2
[19] I.V. Zolotukhin, Physical Properties of Amorphous Metallic
Materials (Moscow, Metallurgiya, 1986) [in Russian]
[20] C.Z. Wang, K.M. Ho, M.D. Shirk, and P.A. Molian, Laser-induced
graphitization on a diamond (111) surface, Phys. Rev. Lett. 85,
4092–4095 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.4092
[21] G. Dumitru, V. Romano, H.P. Weber, S. Pimenov, T. Kononenko, M.
Sentis, J. Hermann, and S. Bruneau, Femtosecond laser ablation of
diamond-like carbon films, Appl. Surf. Sci. 222, 226–233
(2004),
http://dx.doi.org/10.1016/j.apsusc.2003.08.031
[22] C.M. Herzinger, B. Johns, W.A. McGaham, J.A. Woollam, and W.
Paulson, Ellipsometric determination of optical constants for
silicon and thermally grown silicon dioxide via a multi-sample,
multi-wavelength, multi-angle investigation, J. Appl. Phys. 83,
3323–3336 (1998),
http://dx.doi.org/10.1063/1.367101
[23] N. Savvides, Optical constants and associated functions of
metastable diamond-like amorphous carbon films in the energy range
0.5–7.3 eV, J. Appl. Phys. 59, 4133–4145 (1986),
http://dx.doi.org/10.1063/1.336672