[PDF]    http://dx.doi.org/10.3952/lithjphys.47321

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 343–350 (2007)


MODIFICATION OF AMORPHOUS a-C:H FILMS BY LASER IRRADIATION
A. Grigonisa, Ž. Rutkūnienėa, A. Medvidb, P. Onufrijevsb, and J. Babonasc
aPhysics Department, Kaunas University of Technology, Studentų 50, LT-51368 Kaunas, Lithuania
E-mail: zirut@ktu.lt
bRiga Technical University, 14 Azenes St., LV-1048 Riga, Latvia
cSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania

Received 20 June 2007

Amorphous diamond-like hydrogenated carbon films a-C:H were formed on Si wafers by a direct ion beam deposition method from acetylene or a gas mixture of acetylene and hydrogen. The samples were irradiated in a scanning mode by second harmonic (wavelength λ = 532 nm) of a Q-switched YAG:Nd laser. The effect of laser irradiation was studied by Raman and infrared spectroscopy and spectroscopic ellipsometry. The changes in the optical spectra of the samples with different H amount were investigated in the dependence on laser intensity. Experimental data were interpreted taking into account the structural transformations of a-C:H films.
Keywords: amorphous diamond-type carbon films, laser irradiation, optical properties
PACS: 78.66.Jg, 61.80.Ba, 78.20.-e


AMORFINIŲ a-C:H DANGŲ MODIFIKAVIMAS LAZERIO APŠVITA
A. Grigonisa, Ž. Rutkūnienėa, A. Medvidb, P. Onufrijevsb, J. Babonasc
aKauno technologijos universitetas, Kaunas, Lietuva
bRygos technologijos universitetas, Ryga, Latvija
cPuslaidininkių fizikos institutas, Vilnius, Lietuva

Joniniu spinduliniu nusodinimo metodu acetileno bei acetileno/vandenilio mišiniuose ant silicio pagrindo buvo suformuotos amorfinės hidrogenizuotos panãšios į deimantą anglies dangos (a-C:H). Apšvitai koherentinės šviesos kvantais naudotas YAG:Nd impulsinis lazeris, kurio impulso trukmė 10 ns, pasikartojimų dažnis 12,5 Hz, spindulio skersmuo 2,5 mm, skanavimo žingsnis 25 µm, apšvitos galia 1,8–10,2 MW/cm2. Lazerio apšvitos įtaka buvo tirta Ramano, infraraudonosios spektroskopijos bei spektrinės elipsometrijos metodais. Tyrimai parodė, kad, esant skirtingoms vandenilio koncentracijoms dangose, jų optiniai spektrai kinta priklausomai nuo lazerio intensyvumo. Didžiausius pokyčius dėl koherentinės spinduliuotės poveikio patiria turinčios daug sp2 ryšių, t. y. daug grafito fazės; jos savo savybėmis artimos panašioms į grafitą anglies dangoms. Esant tam tikrai apšvitos galiai, kuri priklauso nuo to, kiek dangoje yra sp3 fazės ir kiek vandenilio dalyvauja sudarant šią fazę, šios dangos virsta stiklo anglimi. Taip pat nustatyta, kad lazerio spinduliuotė gali sukelti SiC bei į deimantą panašių kristalitų susidarymą dangose.


References / Nuorodos


[1] J. Robertson, Improving the properties of diamond-like carbon, Diamond Relat. Mater. 12, 79–84 (2003),
http://dx.doi.org/10.1016/S0925-9635(03)00006-2
[2] A. von Keudel, T. Schwarz-Selinger, and W. Jakob, Simultaneous interaction of methyl radicals and atomic hydrogen with amorphous hydrogenated carbon films, J. Appl. Phys. 89, 2979–2986 (2001),
http://dx.doi.org/10.1063/1.1343894
[3] T.V. Kononenko, S.M. Pimenov, V.V. Kononenko, E.V. Zavedeev, V.I. Konov, G. Dumitru, and V. Romano, Laser-induced spallation in diamond-like carbon films, Appl. Phys. A 79, 543–549 (2004),
http://dx.doi.org/10.1007/s00339-003-2356-5
[4] V. Kononenko, V.G. Ralchenko, E.D. Obraztsova, V.I. Konov, E.N. Loubnin, J. Seth, S.V. Babu, and E.N. Loubnin, Excimer laser etching of diamond-like carbon films: Spalling effect, Appl. Surf. Sci. 86, 234–238 (1995),
http://dx.doi.org/10.1016/0169-4332(94)00417-X
[5] D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000),
http://dx.doi.org/10.1007/978-3-662-04074-4
[6] R. Wachter and A. Cordery, Effects of post-deposition annealing on different DLC films, Diamond Relat. Mater. 8, 504–509 (1999),
http://dx.doi.org/10.1016/S0925-9635(98)00395-1
[7] W. Hurler, M. Pietralla, and A. Hammershmidt, Determination of thermal properties of hydrogenated amorphous carbon films via mirage effect measurements, Diamond Relat. Mater. 4, 954–957 (1995),
http://dx.doi.org/10.1016/0925-9635(94)00259-2
[8] M. Šilinskas, A. Grigonis, G. Dikčius, and H. Manikowski, Optical and electron paramagnetic resonance studies of hydrogenated amorphous carbon (a-C:H) thin films formed by direct ion beam deposition method, Proc. SPIE 4415, 266–271 (2001),
http://dx.doi.org/10.1117/12.425504
[9] A. Grigonis, Ž. Rutkūnienė, V. Kopustinskas, G.J. Babonas, and A. Rėza, Investigation of optical properties of a-C:H films deposited from acetylene using direction beam deposition method, Vacuum 78, 593–597 (2005),
http://dx.doi.org/10.1016/j.vacuum.2005.01.092
[10] G.J. Babonas, A. Niilisk, A. Reza, A. Matulis, and A. Rosental, Spectroscopic ellipsometry of TiO2/Si, Proc. SPIE 5122, 50–55 (2003),
http://dx.doi.org/10.1117/12.515700
[11] J.G. Buijnsters, P. Shankar, and W. Flescher, CVD diamond deposition on steel using arc plated chromium nitride interlayers, Diamond Relat. Mater. 11, 536–544 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00628-8
[12] M. Silinskas and A. Grigonis, Low energy post-growth irradiation of amorphous hydrogenated carbon (a-C:H) films, Diamond Relat. Mater. 11, 1026–1030 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00734-8
[13] A. Grigonis, M. Šilinskas, and V. Kopustinskas, Investigation of ion irradiation effects in a-SixC1–x:H thin films, Vacuum 68, 257–261 (2003),
http://dx.doi.org/10.1016/S0042-207X(02)00454-2
[14] A. Heiman, E. Lakin, E. Zolotoyabko, and A. Hoffman, Microstructure and stress in nano-crystalline diamond films deposited by DC glow discharge CVD, Diamond Relat. Mater. 11, 601–607 (2002),
http://dx.doi.org/10.1016/S0925-9635(01)00631-8
[15] G.J. Babonas, A. Rėza, A. Grigonis, D. Tribandis, R. Tamaševičius, and A. Kindurys, Optical properties of amorphous hydrogenated carbon films, Lithuanian J. Phys. 44, 457–464 (2004),
http://dx.doi.org/10.3952/lithjphys.44607
[16] http://www.sopra-sa.com
[17] G.E. Jellison and F.A. Modine, Parametrization of the optical functions of amorphous materials in the interband region, Appl. Phys. Lett. 69, 371–373 (1996),
http://dx.doi.org/10.1063/1.118064
[18] B. Hong, J. Lee, R.W. Collins, Y. Kuang, W. Drawl, R. Messier, T.T. Tsong, and Y.E. Strausser, Effects of processing conditions on the growth of nanocrystalline diamond thin films: Real time spectroscopic ellipsometry studies, Diamond Relat. Mater. 6, 55–80 (1997),
http://dx.doi.org/10.1016/S0925-9635(96)00591-2
[19] I.V. Zolotukhin, Physical Properties of Amorphous Metallic Materials (Moscow, Metallurgiya, 1986) [in Russian]
[20] C.Z. Wang, K.M. Ho, M.D. Shirk, and P.A. Molian, Laser-induced graphitization on a diamond (111) surface, Phys. Rev. Lett. 85, 4092–4095 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.4092
[21] G. Dumitru, V. Romano, H.P. Weber, S. Pimenov, T. Kononenko, M. Sentis, J. Hermann, and S. Bruneau, Femtosecond laser ablation of diamond-like carbon films, Appl. Surf. Sci. 222, 226–233 (2004),
http://dx.doi.org/10.1016/j.apsusc.2003.08.031
[22] C.M. Herzinger, B. Johns, W.A. McGaham, J.A. Woollam, and W. Paulson, Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation, J. Appl. Phys. 83, 3323–3336 (1998),
http://dx.doi.org/10.1063/1.367101
[23] N. Savvides, Optical constants and associated functions of metastable diamond-like amorphous carbon films in the energy range 0.5–7.3 eV, J. Appl. Phys. 59, 4133–4145 (1986),
http://dx.doi.org/10.1063/1.336672