[PDF]    http://dx.doi.org/10.3952/lithjphys.47404

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 63–67 (2007)


DYNAMIC CV CHARACTERISTICS OF MOS STRUCTURES
S. Sakalauskasa and Z. Vaitonisb
aFaculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
bInstitute of Materials Science and Applied Research, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: zenonas.vaitonis@ff.vu.lt

Received 23 June 2007; revised 20 September 2007; accepted 21 November 2007

Dynamic CV characteristics of metal–SiO2–semiconductor (MOS) structures with p-type semiconductor, made by different technologies, were investigated in this work. Voltage–capacitance characteristics of the structures were measured by linearly varying voltage method. Theoretic and experimental analysis of the method revealed peculiarities of its application. It was determined that dynamic CV characteristics of the MOS structures have a peak of the capacitance (wider or narrower), its value being higher than capacitance of SiO2 layer, when the mode of operation changes from depletion to inversion. That character of voltage–capacitance characteristics is determined by redistribution of charge carriers in the heterojunction Si–SiO2 and recharging rapidity of surface states.
Keywords: linearly varying voltage, MOS structure, CV characteristics
PACS: 84.37.+q, 73.40.Qv


DINAMINĖS MOP DARINIŲ CV CHARAKTERISTIKOS
S. Sakalauskas, Z. Vaitonis
Vilniaus universitetas, Vilnius, Lietuva

Pateikti skirtingomis technologijomis suformuotų MOP darinių su skylinio laidumo puslaidininkiu dinaminių CV charakteristikų tyrimo rezultatai. Darinių voltfaradinės charakteristikos buvo matuojamos tiesiškai kintančios įtampos metodu, kurio teorinė ir eksperimentinė analizė atskleidė jo taikymo ypatumus. Tyrimo metu nustatyta, kad MOP darinių dinaminės CV charakteristikos turi charakteringą talpos smailę (siauresnę ar platesnę), pereinant iš nuskurdinimo į inversinį veikos režimą. Tokį voltfaradinių charakteristikų pobūdį nulemia krūvininkų persiskirstymas nevienalytėje sandūroje Si–SiO2 ir paviršinių būsenų persielektrinimo sparta.


References / Nuorodos


[1] V.P. Pronin, Systems of Electric Capacitance in the Electric Physics (Akademiya, Saratov, 1996) [in Russian]
[2] S. Sakalauskas, R. Pūras, and Z. Vaitonis, Quasielectrostatic converters in material's quality control, Ultragarsas (Ultrasound) 59(2), 55–58 (2006)
[3] S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley & Sons, New York, 1981)
[4] K.M. Mang, Y. Kuk, J. Kwon, Y.S. Kim, D. Jeon, and C.J. Kang, Direct imaging of charge redistribution in a thin SiO2 layer, Europhys. Lett. 67(2), 261–266 (2004),
http://dx.doi.org/10.1209/epl/i2003-10288-6
[5] Y.D. Hong and Y.T. Teow, Modeling the effects of interface traps on scanning capacitance microscopy dC/dV measurement, in: Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD), Brisbane, Australia, 8–10 December, 2004, eds. A.D. Rakic and Y.T. Yeow, pp. 149–152,
http://dx.doi.org/10.1109/commad.2004.1577514