[PDF]    http://dx.doi.org/10.3952/lithjphys.47411

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 415–419 (2007)


MODELLING OF REFLECTIVITY IN 1D POROUS SILICON PHOTONIC CRYSTAL
M. Beresnaa, R. Tomašiūnasa, J. Volkb, and G. Kadarb
aInstitute of Materials Science and Applied Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: martynas.beresna@ff.vu.lt
bResearch Institute for Technical Physics and Materials Science of the Hungarian Academy of Sciences, Konkoly Thege
Miklos 29-33, H-1121 Budapest, Hungary


Received 13 July 2007; revised 5 October 2007; accepted 21 November 2007

In this study we present two different ways – direct spectra calculation via transfer matrix method (TMM) and structure reconstruction via optimization technique – for analysing a porous silicon Fabry–Perot resonator. As-prepared and aged cases of the structure are considered. The models used account for oxidation and dispersion of materials. Obtained fits are also demonstrated and discussed.
Keywords: porous silicon, refractive index, Bragg grating, photonics
PACS: 42.25.Bs, 42.70.Qs, 68.65.Ac


AKYTO SILICIO VIENMAČIO FOTONINIO KRISTALO ATSPINDŽIO MODELIAVIMAS
M. Beresnaa, R. Tomašiūnasa, J. Volkb, G. Kadarb
aVilniaus universiteto Medžiagotyros ir taikomųjų mokslų institutas, Vilnius, Lietuva
bVengrijos mokslų akademijos Techninės fizikos ir medžiagotyros institutas, Budapeštas, Vengrija

Pateikti du matematiniai modeliai, skirti tirti vienmačio fotoninio kristalo optines savybes: pernašos matricos metodas ir optimizavimo algoritmas. Jie taikyti nustatant tiriamo fotoninio kristalo sluoksnių storius ir jų lūžio rodiklius pagal išmatuotą atspindžio spektrą. Nagrinėti ir ką tik pagaminto, ir oksidavusio darinio atvejai. Modeliuojant buvo įvertinta dispersijos įtaka atspindžio savybėms, parodyta, kad oksidacija sparčiau vyksta labiau akytame silicyje. Oksidacija taip pat lemia atspindžio spektro poslinkį į trumpesnių bangos ilgių sritį.


References / Nuorodos


[1] G. Vincent, Optical properties of porous silicon superlattices, Appl. Phys. Lett. 64, 2367–2369 (1994),
http://dx.doi.org/10.1063/1.111982
[2] C. Mazzoleni and L. Pavesi, Application to optical components of dielectric porous silicon multilayers, Appl. Phys. Lett. 67, 2983–2985 (1995),
http://dx.doi.org/10.1063/1.114833
[3] J. Volk, T. Le Grand, I. Barsony, J. Gombkötő, and J.J. Ramsden, Porous silicon multilayer stack for sensitive refractive index determination of pure solvents, J. Phys. D 38, 1313–1317 (2005),
http://dx.doi.org/10.1088/0022-3727/38/8/032
[4] P.A. Snow, E.K. Squire, and P.St.J. Russell, Vapor sensing using the optical properties of porous silicon Bragg mirrors, J. Appl. Phys. 86, 1781–1784 (1999),
http://dx.doi.org/10.1063/1.370968
[5] V. Mulloni and L. Pavesi, Porous silicon microcavities as optical chemical sensors, Appl. Phys. Lett. 76, 2523–2525 (2000),
http://dx.doi.org/10.1063/1.126396
[6] T.V. Dolgova, A.I. Maidykovski, M.G. Martemyanov, A.A. Fedyanin, G. Marowsky, V.A. Yakovlev, and G. Mattei, Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals, Appl. Phys. Lett. 81, 2725–2727 (2002),
http://dx.doi.org/10.1063/1.1510968
[7] L. Pavesi and V. Mulloni, All porous silicon microcavities: Growth and physics, J. Lumin. 80, 43–52 (1999),
http://dx.doi.org/10.1016/S0022-2313(98)00069-6
[8] P. Yeh, A. Yariv, and C.-S. Hong, Electromagnetic propagation in periodic stratified media. I. General theory, J. Opt. Soc. Am. 67, 423–438 (1977),
http://dx.doi.org/10.1364/JOSA.67.000423
[9] M. Born and E. Wolf., Principles of Optics, 7th ed. (Cambridge University Press, 1999),
http://dx.doi.org/10.1017/CBO9781139644181
[10] O. Bisi, S. Ossicini, and L. Pavesi, Porous silicon: A quantum sponge structure for silicon based optoelectronics, Surf. Sci. Rep. 38, 1–126 (2000),
http://dx.doi.org/10.1016/S0167-5729(99)00012-6
[11] V. Torres-Costa, F. Pászti, A. Climent-Font, R.J. Martín-Palma, and J.M. Martínez-Duart, Optical and in-depth RBS characterization of porous silicon interference filters, J. Electrochem. Soc. 152, 846–850 (2005),
http://dx.doi.org/10.1149/1.2048229
[12] R.T. Zheng, N.Q. Ngo, L.N. Binh, S.C. Tjin, and P. Shum, Optimization technique for simple reconstruction of the index modulation profile of symmetric fiber Bragg gratings from their reflective spectrum, Opt. Eng. 45, 014403-1–4 (2006),
http://dx.doi.org/10.1117/1.2159408
[13] F. Lhommé, Ch. Caucheteur, K. Chah, M. Blondel, and P. Mégret, Synthesis of fiber Bragg gratings parameters from experimental reflectivity: A simplex approach and its application to the determination of temperature-dependent properties, Appl. Opt. 44, 493–497 (2005),
http://dx.doi.org/10.1364/AO.44.000493
[14] Properties of Silicon (INSPEC, Gresham Press, Surrey, 1988)