[PDF]
http://dx.doi.org/10.3952/lithjphys.47411
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 415–419 (2007)
MODELLING OF REFLECTIVITY IN 1D
POROUS SILICON PHOTONIC CRYSTAL
M. Beresnaa, R. Tomašiūnasa, J. Volkb,
and G. Kadarb
aInstitute of Materials Science and Applied
Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius,
Lithuania
E-mail: martynas.beresna@ff.vu.lt
bResearch Institute for Technical Physics and
Materials Science of the Hungarian Academy of Sciences, Konkoly
Thege
Miklos 29-33, H-1121 Budapest, Hungary
Received 13 July 2007; revised 5
October 2007; accepted 21 November 2007
In this study we present two
different ways – direct spectra calculation via transfer matrix
method (TMM) and structure reconstruction via optimization
technique – for analysing a porous silicon Fabry–Perot resonator.
As-prepared and aged cases of the structure are considered. The
models used account for oxidation and dispersion of materials.
Obtained fits are also demonstrated and discussed.
Keywords: porous silicon, refractive
index, Bragg grating, photonics
PACS: 42.25.Bs, 42.70.Qs, 68.65.Ac
AKYTO SILICIO VIENMAČIO
FOTONINIO KRISTALO ATSPINDŽIO MODELIAVIMAS
M. Beresnaa, R. Tomašiūnasa, J. Volkb,
G. Kadarb
aVilniaus universiteto Medžiagotyros ir taikomųjų
mokslų institutas, Vilnius, Lietuva
bVengrijos mokslų akademijos Techninės fizikos
ir medžiagotyros institutas, Budapeštas, Vengrija
Pateikti du matematiniai modeliai, skirti tirti
vienmačio fotoninio kristalo optines savybes: pernašos matricos
metodas ir optimizavimo algoritmas. Jie taikyti nustatant tiriamo
fotoninio kristalo sluoksnių storius ir jų lūžio rodiklius pagal
išmatuotą atspindžio spektrą. Nagrinėti ir ką tik pagaminto, ir
oksidavusio darinio atvejai. Modeliuojant buvo įvertinta
dispersijos įtaka atspindžio savybėms, parodyta, kad oksidacija
sparčiau vyksta labiau akytame silicyje. Oksidacija taip pat lemia
atspindžio spektro poslinkį į trumpesnių bangos ilgių sritį.
References / Nuorodos
[1] G. Vincent, Optical properties of porous silicon superlattices,
Appl. Phys. Lett. 64, 2367–2369 (1994),
http://dx.doi.org/10.1063/1.111982
[2] C. Mazzoleni and L. Pavesi, Application to optical components of
dielectric porous silicon multilayers, Appl. Phys. Lett. 67,
2983–2985 (1995),
http://dx.doi.org/10.1063/1.114833
[3] J. Volk, T. Le Grand, I. Barsony, J. Gombkötő, and J.J. Ramsden,
Porous silicon multilayer stack for sensitive refractive index
determination of pure solvents, J. Phys. D 38, 1313–1317
(2005),
http://dx.doi.org/10.1088/0022-3727/38/8/032
[4] P.A. Snow, E.K. Squire, and P.St.J. Russell, Vapor sensing using
the optical properties of porous silicon Bragg mirrors, J. Appl.
Phys. 86, 1781–1784 (1999),
http://dx.doi.org/10.1063/1.370968
[5] V. Mulloni and L. Pavesi, Porous silicon microcavities as
optical chemical sensors, Appl. Phys. Lett. 76, 2523–2525
(2000),
http://dx.doi.org/10.1063/1.126396
[6] T.V. Dolgova, A.I. Maidykovski, M.G. Martemyanov, A.A. Fedyanin,
G. Marowsky, V.A. Yakovlev, and G. Mattei, Giant microcavity
enhancement of second-harmonic generation in all-silicon photonic
crystals, Appl. Phys. Lett. 81, 2725–2727 (2002),
http://dx.doi.org/10.1063/1.1510968
[7] L. Pavesi and V. Mulloni, All porous silicon microcavities:
Growth and physics, J. Lumin. 80, 43–52 (1999),
http://dx.doi.org/10.1016/S0022-2313(98)00069-6
[8] P. Yeh, A. Yariv, and C.-S. Hong, Electromagnetic propagation in
periodic stratified media. I. General theory, J. Opt. Soc. Am. 67,
423–438 (1977),
http://dx.doi.org/10.1364/JOSA.67.000423
[9] M. Born and E. Wolf., Principles of Optics, 7th ed.
(Cambridge University Press, 1999),
http://dx.doi.org/10.1017/CBO9781139644181
[10] O. Bisi, S. Ossicini, and L. Pavesi, Porous silicon: A quantum
sponge structure for silicon based optoelectronics, Surf. Sci. Rep.
38, 1–126 (2000),
http://dx.doi.org/10.1016/S0167-5729(99)00012-6
[11] V. Torres-Costa, F. Pászti, A. Climent-Font, R.J. Martín-Palma,
and J.M. Martínez-Duart, Optical and in-depth RBS characterization
of porous silicon interference filters, J. Electrochem. Soc. 152,
846–850 (2005),
http://dx.doi.org/10.1149/1.2048229
[12] R.T. Zheng, N.Q. Ngo, L.N. Binh, S.C. Tjin, and P. Shum,
Optimization technique for simple reconstruction of the index
modulation profile of symmetric fiber Bragg gratings from their
reflective spectrum, Opt. Eng. 45, 014403-1–4 (2006),
http://dx.doi.org/10.1117/1.2159408
[13] F. Lhommé, Ch. Caucheteur, K. Chah, M. Blondel, and P. Mégret,
Synthesis of fiber Bragg gratings parameters from experimental
reflectivity: A simplex approach and its application to the
determination of temperature-dependent properties, Appl. Opt. 44,
493–497 (2005),
http://dx.doi.org/10.1364/AO.44.000493
[14] Properties of Silicon (INSPEC, Gresham Press, Surrey,
1988)