[PDF]    http://dx.doi.org/10.3952/lithjphys.47415

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 475–483 (2007)


EFFECT OF THICKNESS OF ULTRA-THIN TIN OXIDE FILM BASED GAS SENSORS*
V. Bukauskasa, A. Olekasa, D. Senulienėa, V. Strazdienėa, A. Šetkusa, S. Kačiulisb, and L. Pandolfib
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: virgis@pfi.lt
bInstitute for the Study of Nanostructured Materials (ISMN-CNR), P.O. Box 10, I-00016 Monterotondo Stazione, Roma, Italy

Received 28 September 2007; revised 15 October 2007; accepted 21 November 2007

Ultra-thin tin oxide films (of 1–40 nm thickness) for gas sensing were grown by dc-magnetron sputtering. Stoichiometric and stable SnO films were characterized by unexpected dependence of the clean air resistance and the resistance response to H2, NO2 gases on the average thickness of the film. The response to gas significantly increased in the extremely thin films. The rate of the sensor response to gas was independent of the thickness. The morphology and chemical composition of the films was analysed by scanning probe microscopy (SPM) and X-ray photoelectron spectroscopy (XPS). The mechanism of the thickness effect on the sensor properties is discussed within the context of development of the part per billion-sensitive miniaturized sensors.
Keywords: gas sensors, metal oxide, resistance response, thickness effect, morphology
PACS: 07.07.Df, 68.37.Ps, 82.80.Pv, 68.55.-a
*The report presented at the 37th Lithuanian National Physics Conference, 11–13 June 2007, Vilnius, Lithuania.


LABAI PLONŲ ALAVO OKSIDO SLUOKSNIŲ STORIO ĮTAKA DUJŲ JUTIKLIŲ PARAMETRAMS
V. Bukauskasa, A. Olekasa, D. Senulienėa, V. Strazdienėa, A. Šetkusa, S. Kačiulisb, L. Pandolfib
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bNanosandaros medžiagų tyrimo institutas, Monterotondo Stacione, Roma, Italija

Magnetroninio dulkinimo būdu užaugintų plonų (1–40 nm storio) H2 ir NO2 dujoms jautrių alavo oksido sluoksnių pagrindu pagamintos kelios serijos skirtingų jutiklių. Jutikliai skyrėsi vien tik alavo oksido sluoksnio storiu. Jutiklių parametrai (elektrinė varža švariame ore, varžos atsakas į dujas ir atsako laikas) buvo matuojami juos patalpinus kameroje su valdoma atmosfera. Savo stacionariais parametrais labiausiai išsiskyrė jutikliai su 4–6 nm storio SnOx sluoksniais, o dinaminiai parametrai nepriklausė nuo dujoms jautraus sluoksnio storio. Jutiklio parametrų pokyčiai atitiko SnOx sluoksnių morfologijos kitimą (ypatingai lygumą). Sluoksnių morfologijai ir cheminei sudėčiai tirti panaudoti skenuojančio zondo mikroskopas (SZM) ir Rentgeno fotoelektronų spektroskopas. Tyrimų rezultatai rodo, kad ploniems (<100 nm) metalų oksidų sluoksniams dujų difuzijos į gylį modelis netinka. Rezultatai paaiškinami elektrinės srovės kanalų tinklo kitimu esant skirtingam sluoksnių storiui.


References / Nuorodos


[1] A. D'Amico, C. Di Natale, E. Martinelli, L. Sandro, and G. Baccarani, Sensors small and numerous: Always a winnig strategy?, Sens. Actuators B 106, 144–152 (2005),
http://dx.doi.org/10.1016/j.snb.2004.05.046
[2] J. Klober, M. Ludwig, and H.A. Schneider, Effects of thickness and additives on thin-film SnO2 gas sensor, Sens. Actuators B 3, 69–74 (1991),
http://dx.doi.org/10.1016/0925-4005(91)85009-8
[3] S. Altieri, L.H. Tjeng, and G.A. Sawatzky, Ultrathin oxide films on metals: New physics and new chemistry?, Thin Solid Films 400, 9–15 (2001),
http://dx.doi.org/10.1016/S0040-6090(01)01484-5
[4] N. Matsunaga, G. Sakai, K. Shimanoe, and N. Yamazoe, Diffusion equation-based study of thin film semiconductor gas sensor-response transient, Sens. Actuators B 83, 216–221 (2002),
http://dx.doi.org/10.1016/S0925-4005(01)01043-7
[5] G. Blaser, Th. Ruhl, C. Diehl, M. Ulrich, and D. Kohl, Nanostructured semiconductor gas sensors to overcome sensitivity limitations due to percolation effects, Physica A 266, 218–223 (1999),
http://dx.doi.org/10.1016/S0378-4371(98)00595-0
[6] N. Yamazoe, Toward innovations of gas sensor technology, Sens. Actuators B 108, 2–14 (2005),
http://dx.doi.org/10.1016/j.snb.2004.12.075
[7] E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, and M. Zha, Tin oxide nanobelts electrical and sensing properties, Sens. Actuators B 111–112, 2–6 (2005),
http://dx.doi.org/10.1016/j.snb.2005.06.031
[8] A. Galdikas, Ž. Kancleris, D. Senulienė, and A. Šetkus, Influence of heterogeneous reaction rate on response kinetics of metal oxide sensors to gas: Application to the recognition of an odour, Sens. Actuators B 95, 244–251 (2003),
http://dx.doi.org/10.1016/S0925-4005(03)00434-9
[9] A. Šetkus, C. Baratto, E. Comini, G. Faglia, A. Galdikas, Ž. Kancleris, G. Sberveglieri, and D. Senulienė, Influence of metallic impurities on response kinetics in metal oxide thin film gas sensors, Sens. Actuators B 103, 448–456 (2004),
http://dx.doi.org/10.1016/j.snb.2004.05.004
[10] A. Šetkus, S. Kaciulis, L. Pandolfi, D. Senulienė, and V. Strazdienė, Tuning of the response kinetics by the impurity concentration in metal oxide gas sensors, Sens. Actuators B 111–112, 36–44 (2005),
http://dx.doi.org/10.1016/j.snb.2005.07.021
[11] G. Gaggiotti, A. Galdikas, S. Kačiulis, G. Mattogno, and A. Šetkus, Temperature dependencies of sensitivity and surface chemical composition of SnOx gas sensors, Sens. Actuators B 24–25, 516–519 (1995),
http://dx.doi.org/10.1016/0925-4005(95)85111-9
[12] G. Gaggiotti, A. Galdikas, S. Kačiulis, G. Mattogno, and A. Šetkus, Surface chemical composition study of tin oxide based gas sensors, J. Appl. Phys. 76, 4467–4471 (1994),
http://dx.doi.org/10.1063/1.357277
[13] A. Šetkus, Heterogeneous reaction rate based description of the response kinetics in metal oxide gas sensors, Sens. Actuators B 87, 346–357 (2002),
http://dx.doi.org/10.1016/S0925-4005(02)00269-1
[14] A. Galdikas, V. Jasutis, S. Kačiulis, G. Mattogno, A. Mironas, V. Olevano, D. Senulienė, and A. Šetkus, Peculiarities of surface doping with Cu in SnO2-thin film gas sensors, Sens. Actuators B 43, 140–146 (1997),
http://dx.doi.org/10.1016/S0925-4005(97)00206-2
[15] A.R. González-Elipe, V. Jiménez, A. Fernández, and J.P. Espinós, Interface effects for metal oxide thin films deposited on another metal oxide: I. SnO deposited on SiO2, Surf. Sci. 350, 123–135 (1996),
http://dx.doi.org/10.1016/0039-6028(95)01071-8
[16] R.P.U. Karunasiri, R. Bruinsma, and J. Rudnick, Thin-film growth and shadow instability, Phys. Rev. Lett. 62, 788–791 (1989),
http://dx.doi.org/10.1103/PhysRevLett.62.788
[17] F. Ying, R.W. Smith, and D.J. Srolovitz, The mechanism of texture formation during film growth: The roles of preferential sputtering and shadowing, Appl. Phys. Lett. 69, 3007–3009 (1996),
http://dx.doi.org/10.1063/1.116821
[18] I. Petrov, P.B. Bama, L. Hultman, and J.E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A 21, 117–128 (2003),
http://dx.doi.org/10.1116/1.1601610
[19] C. Friesen, S.C. Seel, and C.V. Thompson, Reversible stress changes at all stages of Volmer–Weber film growth, J. Appl. Phys. 95, 1011–1020 (2004),
http://dx.doi.org/10.1063/1.1637728