[PDF]
http://dx.doi.org/10.3952/lithjphys.47415
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 475–483 (2007)
EFFECT OF THICKNESS OF
ULTRA-THIN TIN OXIDE FILM BASED GAS SENSORS*
V. Bukauskasa, A. Olekasa, D. Senulienėa,
V. Strazdienėa, A. Šetkusa, S. Kačiulisb,
and L. Pandolfib
aSemiconductor Physics Institute, A. Goštauto 11,
LT-01108 Vilnius, Lithuania
E-mail: virgis@pfi.lt
bInstitute for the Study of Nanostructured Materials
(ISMN-CNR), P.O. Box 10, I-00016 Monterotondo Stazione, Roma,
Italy
Received 28 September 2007; revised
15 October 2007; accepted 21 November 2007
Ultra-thin tin oxide films (of
1–40 nm thickness) for gas sensing were grown by dc-magnetron
sputtering. Stoichiometric and stable SnO films were characterized
by unexpected dependence of the clean air resistance and the
resistance response to H2, NO2 gases on the
average thickness of the film. The response to gas significantly
increased in the extremely thin films. The rate of the sensor
response to gas was independent of the thickness. The morphology
and chemical composition of the films was analysed by scanning
probe microscopy (SPM) and X-ray photoelectron spectroscopy (XPS).
The mechanism of the thickness effect on the sensor properties is
discussed within the context of development of the part per
billion-sensitive miniaturized sensors.
Keywords: gas sensors, metal oxide,
resistance response, thickness effect, morphology
PACS: 07.07.Df, 68.37.Ps, 82.80.Pv, 68.55.-a
*The report presented at the 37th Lithuanian National Physics
Conference, 11–13 June 2007, Vilnius, Lithuania.
LABAI PLONŲ ALAVO OKSIDO
SLUOKSNIŲ STORIO ĮTAKA DUJŲ JUTIKLIŲ PARAMETRAMS
V. Bukauskasa, A. Olekasa, D. Senulienėa,
V. Strazdienėa, A. Šetkusa, S. Kačiulisb,
L. Pandolfib
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bNanosandaros medžiagų tyrimo institutas,
Monterotondo Stacione, Roma, Italija
Magnetroninio dulkinimo būdu užaugintų plonų
(1–40 nm storio) H2 ir NO2 dujoms jautrių
alavo oksido sluoksnių pagrindu pagamintos kelios serijos
skirtingų jutiklių. Jutikliai skyrėsi vien tik alavo oksido
sluoksnio storiu. Jutiklių parametrai (elektrinė varža švariame
ore, varžos atsakas į dujas ir atsako laikas) buvo matuojami juos
patalpinus kameroje su valdoma atmosfera. Savo stacionariais
parametrais labiausiai išsiskyrė jutikliai su 4–6 nm storio SnOx
sluoksniais, o dinaminiai parametrai nepriklausė nuo dujoms
jautraus sluoksnio storio. Jutiklio parametrų pokyčiai atitiko SnOx
sluoksnių morfologijos kitimą (ypatingai lygumą). Sluoksnių
morfologijai ir cheminei sudėčiai tirti panaudoti skenuojančio
zondo mikroskopas (SZM) ir Rentgeno fotoelektronų spektroskopas.
Tyrimų rezultatai rodo, kad ploniems (<100 nm) metalų oksidų
sluoksniams dujų difuzijos į gylį modelis netinka. Rezultatai
paaiškinami elektrinės srovės kanalų tinklo kitimu esant
skirtingam sluoksnių storiui.
References / Nuorodos
[1] A. D'Amico, C. Di Natale, E. Martinelli, L. Sandro, and G.
Baccarani, Sensors small and numerous: Always a winnig strategy?,
Sens. Actuators B 106, 144–152 (2005),
http://dx.doi.org/10.1016/j.snb.2004.05.046
[2] J. Klober, M. Ludwig, and H.A. Schneider, Effects of thickness
and additives on thin-film SnO2 gas sensor, Sens. Actuators B 3,
69–74 (1991),
http://dx.doi.org/10.1016/0925-4005(91)85009-8
[3] S. Altieri, L.H. Tjeng, and G.A. Sawatzky, Ultrathin oxide films
on metals: New physics and new chemistry?, Thin Solid Films 400,
9–15 (2001),
http://dx.doi.org/10.1016/S0040-6090(01)01484-5
[4] N. Matsunaga, G. Sakai, K. Shimanoe, and N. Yamazoe, Diffusion
equation-based study of thin film semiconductor gas sensor-response
transient, Sens. Actuators B 83, 216–221 (2002),
http://dx.doi.org/10.1016/S0925-4005(01)01043-7
[5] G. Blaser, Th. Ruhl, C. Diehl, M. Ulrich, and D. Kohl,
Nanostructured semiconductor gas sensors to overcome sensitivity
limitations due to percolation effects, Physica A 266,
218–223 (1999),
http://dx.doi.org/10.1016/S0378-4371(98)00595-0
[6] N. Yamazoe, Toward innovations of gas sensor technology, Sens.
Actuators B 108, 2–14 (2005),
http://dx.doi.org/10.1016/j.snb.2004.12.075
[7] E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti,
and M. Zha, Tin oxide nanobelts electrical and sensing properties,
Sens. Actuators B 111–112, 2–6 (2005),
http://dx.doi.org/10.1016/j.snb.2005.06.031
[8] A. Galdikas, Ž. Kancleris, D. Senulienė, and A. Šetkus,
Influence of heterogeneous reaction rate on response kinetics of
metal oxide sensors to gas: Application to the recognition of an
odour, Sens. Actuators B 95, 244–251 (2003),
http://dx.doi.org/10.1016/S0925-4005(03)00434-9
[9] A. Šetkus, C. Baratto, E. Comini, G. Faglia, A. Galdikas, Ž.
Kancleris, G. Sberveglieri, and D. Senulienė, Influence of metallic
impurities on response kinetics in metal oxide thin film gas
sensors, Sens. Actuators B 103, 448–456 (2004),
http://dx.doi.org/10.1016/j.snb.2004.05.004
[10] A. Šetkus, S. Kaciulis, L. Pandolfi, D. Senulienė, and V.
Strazdienė, Tuning of the response kinetics by the impurity
concentration in metal oxide gas sensors, Sens. Actuators B 111–112,
36–44 (2005),
http://dx.doi.org/10.1016/j.snb.2005.07.021
[11] G. Gaggiotti, A. Galdikas, S. Kačiulis, G. Mattogno, and A.
Šetkus, Temperature dependencies of sensitivity and surface chemical
composition of SnOx gas sensors, Sens. Actuators B 24–25,
516–519 (1995),
http://dx.doi.org/10.1016/0925-4005(95)85111-9
[12] G. Gaggiotti, A. Galdikas, S. Kačiulis, G. Mattogno, and A.
Šetkus, Surface chemical composition study of tin oxide based gas
sensors, J. Appl. Phys. 76, 4467–4471 (1994),
http://dx.doi.org/10.1063/1.357277
[13] A. Šetkus, Heterogeneous reaction rate based description of the
response kinetics in metal oxide gas sensors, Sens. Actuators B 87,
346–357 (2002),
http://dx.doi.org/10.1016/S0925-4005(02)00269-1
[14] A. Galdikas, V. Jasutis, S. Kačiulis, G. Mattogno, A. Mironas,
V. Olevano, D. Senulienė, and A. Šetkus, Peculiarities of surface
doping with Cu in SnO2-thin film gas sensors, Sens. Actuators B 43,
140–146 (1997),
http://dx.doi.org/10.1016/S0925-4005(97)00206-2
[15] A.R. González-Elipe, V. Jiménez, A. Fernández, and J.P.
Espinós, Interface effects for metal oxide thin films deposited on
another metal oxide: I. SnO deposited on SiO2, Surf. Sci.
350, 123–135 (1996),
http://dx.doi.org/10.1016/0039-6028(95)01071-8
[16] R.P.U. Karunasiri, R. Bruinsma, and J. Rudnick, Thin-film
growth and shadow instability, Phys. Rev. Lett. 62, 788–791
(1989),
http://dx.doi.org/10.1103/PhysRevLett.62.788
[17] F. Ying, R.W. Smith, and D.J. Srolovitz, The mechanism of
texture formation during film growth: The roles of preferential
sputtering and shadowing, Appl. Phys. Lett. 69, 3007–3009
(1996),
http://dx.doi.org/10.1063/1.116821
[18] I. Petrov, P.B. Bama, L. Hultman, and J.E. Greene,
Microstructural evolution during film growth, J. Vac. Sci. Technol.
A 21, 117–128 (2003),
http://dx.doi.org/10.1116/1.1601610
[19] C. Friesen, S.C. Seel, and C.V. Thompson, Reversible stress
changes at all stages of Volmer–Weber film growth, J. Appl. Phys.
95, 1011–1020 (2004),
http://dx.doi.org/10.1063/1.1637728