[PDF]
http://dx.doi.org/10.3952/lithjphys.47421
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 443–449 (2007)
A 13C NMR AND
DENSITY FUNCTIONAL THEORY STUDY OF CRITICAL BEHAVIOUR OF BINARY
WATER / 2,6-LUTIDINE SOLUTION*
K. Aidasa, A. Maršalkab, Z. Gdaniecc,
and V. Balevičiusb
aDepartment of Chemistry, H.C. Ørsted Institute,
University of Copenhagen, Universitetsparken 5, DK-2100
Copenhagen Ø, Denmark
E-mail: kestas@theory.ki.ku.dk
bFaculty of Physics, Vilnius University, Saulėtekio
9, LT-10222 Vilnius, Lithuania
E-mail: arunas.marsalka@ff.vu.lt, vytautas.balevicius@ff.vu.lt
cInstitute of Bioorganic Chemistry, Polish Academy
of Sciences, PL-61704 Poznan, Poland
E-mail: zgdan@ibch.poznan.pl
Received 4 September 2007; revised
18 September 2007; accepted 21 November 2007
Temperature dependences of 13C
NMR shifts have been measured in binary water / 2,6-lutidine
mixture close to the lower critical solution point at TCL
= 306.0±0.5 K. In order to evaluate hydrogen bonding and solvent
effect contributions to the measured chemical shifts, 13C
magnetic shielding tensors of non-bonded 2,6-lutidine molecule, as
well as water / 2,6-lutidine H-bond complex in vacuo and in
various solvents (acetonitrile, water) have been calculated using
the density functional theory (DFT) with the modified hybrid
functional of Perdew, Burke, and Ernzerhof (PBE1PBE). The solvent
reaction field effect has been taken into account using the
polarizable continuum model (PCM). 13C NMR shifts
‘order parameters’ (Δδ = |δ+ – δ–|)
and ‘diameters’ (ϕδ = |(δ+ + δ–)/2
– δC|, where δ+, δ–,
and δC are the chemical shifts of coexisting
phases and at the critical point respectively) have been
calculated for each 13C signal close to TCL
and processed using linear regression analysis of Δδ ~ |T
– TCL| and ϕδ ~ |T – TCL|
in the log–log plot. It has been shown that the critical
index β can be determined most correctly using
temperature dependences of the 13C NMR signals of C4
and C3,5 carbons of 2,6-lutidine. An evaluation of critical index
of ‘diameter’ is rather imprecise because of problems of
referencing of δC. The obtained ϕδ
slope from C4 data (0.65±0.08) are closer to 2β than to 1
– α value. The results are discussed in the light of DFT
data and within the concept of complete scaling.
Keywords: properties of molecules and
molecular ions, line and band widths, shapes and shifts, density
functional theory, phase separation, critical phenomena
PACS: 33.15.-e, 33.70.Jg, 76.60.-k, 64.75.+g, 82.60.-s
*The report presented at the 37th Lithuanian National Physics
Conference, 11–13 June 2007, Vilnius, Lithuania.
KRIZINĖS DVINARIO VANDENS /
2,6-LUTIDINO TIRPALO ELGSENOS TYRIMAI TAIKANT 13C
BMR SPEKTROSKOPIJĄ IR TANKIO FUNKCIONALO TEORIJĄ
K. Aidasa, A. Maršalkab, Z. Gdaniecc,
V. Balevičiusb
aKopenhagos universiteto H.K. Erstedo instituto
Chemijos fakultetas, Kopenhaga, Danija
bVilniaus universiteto Fizikos fakultetas,
Vilnius, Lietuva
cLenkijos mokslų akademijos Bioorganinės
chemijos institutas, Poznanė, Lenkija
Pastaruoju metu dėl augančio susidomėjimo
heterogeninių sistemų ir molekulių nano-spiečių formavimosi
vyksmais vis svarbesniais tampa įvairių vandens darinių (vandens /
organinių sandų tirpalų, sistemų su joniniais sandais ir kt.)
krizinių savybių ir krizinių parametrų įvertinimai. Darbe buvo
eksperimentiškai išmatuotos vandens / 2,6-lutidino tirpalo 13C
BMR poslinkių priklausomybės nuo temperatūros žemutinio krizinio
taško TCL = 306,0±0,5 K artumoje. Siekiant
įvertinti vandenilinio ryšio (H ryšio) ir terpės reakcijos lauko
indėlius išmatuotiesiems cheminiams poslinkiams, pasitelkus
kvantinės mechanikos tankio funkcionalo teoriją (DFT), buvo
apskaičiuoti 2,6-lutidino molekulės bei vandens ir 2,6-lutidino
H-ryšio kompleksų vakuume ir įvairiuose tirpikliuose
(acetonitrile, vandenyje) anglies magnetinio ekranavimo tenzoriai.
Skaičiavimai buvo atlikti taikant modifikuotąjį hibridinį Perdew,
Burke ir Ernzerhof funkcionalą (PBE1PBE) bei GIAO atominių
orbitalių artinį. Į dielektrinės terpės reakcijos lauką
atsižvelgta pritaikant poliarizuojamojo kontinuumo modelį (PCM). 13C
BMR cheminių poslinkių „tvarkos parametras” Δδ = |δ+
– δ–| ir „skersmuo” ϕδ = |(δ+
+ δ–)/2 – δC| (čia δ+,
δ– ir δC atitinkamai yra
sambūvio fazių ir krizinio taško cheminiai poslinkiai) buvo
apskaičiuoti visiems 13C BMR signalams ir apdoroti,
atliekant priklausomybių Δδ ~ |T – TCL|
ir ϕδ ~ |T – TCL| tiesinę
regresijos analizę dvigubuose logaritminiuose (log–log)
grafikuose. Parodyta, kad tiksliausiai šios sistemos tvarkos
parametro krizinis rodiklis β gali būti nustatytas
remiantis 2,6-lutidino C4 ir C3,5 anglies BMR signalų
priklausomybėmis nuo temperatūros. „Skersmens” krizinę elgseną
tirti yra labai sunku dėl atskaitos signalo problemų matuojant C.
Priklausomybės log ϕδ ~ log |T – TCL|
polinkis 0,65±0,08, nustatytas remiantis C4 duomenimis, yra
artimesnis 2β nei 1 – α vertėms. Gautosios išvados
pagrindžiamos DFT skaičiavimų rezultatais ir aptariamos krizinių
reiškinių pilno mastelio invariantiškumo požiūriu.
References / Nuorodos
[1] J.M. Sorensen and W. Arlt, Liquid–Liquid Equilibrium Data
Collection. Dechema Chem. Data Ser., V. 5, Part 1 (DECHEMA,
Frankfurt am Main, 1979)
[2] R.E. Goldstein, Substituent effects on intermolecular hydrogen
bonding from lattice gas theory for lower critical points:
Comparison with experiments on aqueous solutions of alkylpyridines,
J. Chem. Phys. 79, 4439–4447 (1983),
http://dx.doi.org/10.1063/1.446329
[3] A.F. Kostko, M.A. Anisimov, and J.V. Sengers, Criticality in
aqueous solutions of 3-methylpyridine and sodium bromide, Phys. Rev.
E 70, 026118-1–11 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.026118
[4] T. Narayanan, A. Kumar, S. Venkatachalam, J. Jacob, and B.V.
Parfulla, Exploration of a quadruple critical point in a quaternary
liquid mixture, J. Chem. Phys. 102, 9653–9658 (1995),
http://dx.doi.org/10.1063/1.468784
[5] M. Wagner, O. Stanga, and W. Schroer, Tricriticality in the
ternary system 3-methylpyridine / water / NaBr? The light-scattering
intensity, Phys. Chem. Chem. Phys. 6, 580–589 (2004),
http://dx.doi.org/10.1039/B313564K
[6] J. Jacob, A. Kumar, S. Asokan, D. Sen, R. Chitra, and S.
Mazunder, Evidence of clustering in an aqueous electrolyte solution:
A small-angle X-ray scattering study, Chem. Phys. Lett. 304,
180–186 (1999),
http://dx.doi.org/10.1016/S0009-2614(99)00262-6
[7] V. Balevicius, Z. Gdaniec, and H. Fuess, NMR probing of
structural peculiarities in ionic solutions close to critical point,
J. Chem. Phys. 123, 224503-1–5 (2005),
http://dx.doi.org/10.1063/1.1989312
[8] V. Balevicius, N. Weiden, and Al. Weiss, 1H and 2H
NMR studies of mixtures 2,6-lutidine / water near the lower critical
solution point, Naturforsch. 47a, 583–587 (1992),
http://dx.doi.org/10.1515/zna-1992-0406
[9] V. Balevicius, V.J. Balevicius, K. Aidas, and H. Fuess,
Determination of critical indices by 'slow' spectroscopy: NMR shifts
by statistical thermodynamics and density functional theory
calculations, J. Phys. Chem. B 111, 2523–2532 (2007),
http://dx.doi.org/10.1021/jp065477x
[10] M. Wagner, O. Stanga, and W. Schroer, Tricriticality in the
ternary system 3-methylpyridine / water / NaBr? The coexistence
curves, Phys. Chem. Chem. Phys. 5, 1225–1234 (2003),
http://dx.doi.org/10.1039/b212337a
[11] M. Wagner, O. Stanga, and W. Schroer, Tricriticality in the
ternary system 3-methylpyridine / water / NaBr? Measurements of the
viscosity, Phys. Chem. Chem. Phys. 4, 5300–5306 (2002),
http://dx.doi.org/10.1039/B206974A
[12] S. Lacelle, F. Cau, and L. Tremblay, Nuclear magnetic resonance
studies of hydrodynamic effects in a critical binary mixture, J.
Phys. Chem. 95, 7071–7078 (1991),
http://dx.doi.org/10.1021/j100171a065
[13] I. Papai and G. Jancso, Hydrogen bonding in methyl-substituted
pyridine–water complexes: A theoretical study, J. Phys. Chem. A 104,
2132–2137 (2000),
http://dx.doi.org/10.1021/jp994094e
[14] M.C. Sicilia, C. Munoz-Caro, and A. Nino, Theoretical analysis
of pyridine protonation in water clusters of increasing size, Chem.
Phys. Chem. 6, 139–147 (2005),
http://dx.doi.org/10.1002/cphc.200400344
[15] T. Koedermann, F. Schulte, M. Huelsekopf, and R. Ludwig,
Formation of water clusters in a hydrophobic solvent, Angew. Chem.
Int. Ed. 42, 4904–4908 (2003),
http://dx.doi.org/10.1002/anie.200351438
[16] J. Kongsted, C.B. Nielsen, K.V. Mikkelsen, O. Christiansen, and
K. Ruud, Nuclear magnetic shielding constants of liquid water:
Insights from hybrid quantum mechanics / molecular mechanics models,
J. Chem. Phys. 126, 034510-1–8 (2007),
http://dx.doi.org/10.1063/1.2424713
[17] Almanac, Bruker-Biospin (2005) pp. 32–33
[18] http://www.mestrec.com
[19] Origin 6.1, OriginLab Corporation,
http://www.OriginLab.com
[20] V. Balevicius, K. Aidas, J. Tamuliene, and H. Fuess, 1H
NMR and DFT study of proton exchange in heterogeneous structures of
pyridine-N-oxide / HCl / DCl / H2O, Spectrochim. Acta
Part A 61, 835–839 (2005),
http://dx.doi.org/10.1016/j.saa.2004.06.007
[21] K. Aidas and V. Balevicius, Proton transfer in H-bond:
Possibility of short-range order solvent effect, J. Mol. Liquids 127,
134–138 (2006)
http://dx.doi.org/10.1016/j.molliq.2006.03.036
[22] J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient
approximation for the exchange–correlation hole of a many-electron
system, Phys. Rev. B 54, 16533–16539 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.16533
[23] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient
approximation made simple, Phys. Rev. Lett. 78, 1396 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.1396
[24] Gaussian 03, Revision B.05, M.J. Frisch, G.W. Trucks,
H.B. Schlegel et al, Gaussian, Inc., Pittsburgh PA, 2003
[25] J.F. Hinton and K. Wolinski, in: Theoretical Treatments of
Hydrogen Bonding, ed. D. Hadzi (John Wiley & Sons,
Chichester, 1997) pp. 75–93
[26] V. Barone, M. Cossi, and J. Tomasi, Geometry optimization of
molecular structures in solution by the polarizable continuum model,
J. Comput. Chem. 19, 404–417 (1998),
http://dx.doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
[27] E. Cances, B. Mennucci, and J. Tomasi, Evaluation of solvent
effects in isotropic and anisotropic dielectrics, and in ionic
solutions with a unified integral equation method: Theoretical
bases, computational implementation and numerical applications, J.
Phys. Chem. 107, 3032–3041 (1997),
http://dx.doi.org/10.1021/jp971959k
[28] J. Wang, M.A. Anisimov, and J.V. Sengers, Closed solubility
loops in liquid mixtures, Z. Phys. Chem. 219, 1273–1297
(2005),
http://dx.doi.org/10.1524/zpch.2005.219.9.1273
[29] V. Balevicius and K. Aidas, Temperature dependence of 1H
and
17O NMR shifts of water: Entropy effect, Appl. Magn.
Reson. 32 (2007) [in press],
http://dx.doi.org/10.1007/s00723-007-0021-4
[30] S.C. Greer, B.K. Das, A. Kumar, and E.S.R. Gopal, Critical
behavior of the diameters of liquid–liquid coexistence curves, J.
Chem. Phys. 79, 4545–4552 (1983),
http://dx.doi.org/10.1063/1.446369
[31] M.E. Fisher and G. Orkoulas, The Yang–Yang anomaly in fluid
criticality: Experiment and scaling theory, Phys. Rev. Lett. 85,
696–699 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.696
[32] C.A. Cerdeirina, M.A. Anisimov, and J.V. Sengers, The nature of
singular coexistence-curve diameters of liquid–liquid phase
equilibria, Chem. Phys. Lett. 424, 414–419 (2006),
http://dx.doi.org/10.1016/j.cplett.2006.04.044