[PDF]    http://dx.doi.org/10.3952/lithjphys.47421

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 443–449 (2007)


A 13C NMR AND DENSITY FUNCTIONAL THEORY STUDY OF CRITICAL BEHAVIOUR OF BINARY WATER / 2,6-LUTIDINE SOLUTION*
K. Aidasa, A. Maršalkab, Z. Gdaniecc, and V. Balevičiusb
aDepartment of Chemistry, H.C. Ørsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
E-mail: kestas@theory.ki.ku.dk
bFaculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: arunas.marsalka@ff.vu.lt, vytautas.balevicius@ff.vu.lt
cInstitute of Bioorganic Chemistry, Polish Academy of Sciences, PL-61704 Poznan, Poland
E-mail: zgdan@ibch.poznan.pl

Received 4 September 2007; revised 18 September 2007; accepted 21 November 2007

Temperature dependences of 13C NMR shifts have been measured in binary water / 2,6-lutidine mixture close to the lower critical solution point at TCL = 306.0±0.5 K. In order to evaluate hydrogen bonding and solvent effect contributions to the measured chemical shifts, 13C magnetic shielding tensors of non-bonded 2,6-lutidine molecule, as well as water / 2,6-lutidine H-bond complex in vacuo and in various solvents (acetonitrile, water) have been calculated using the density functional theory (DFT) with the modified hybrid functional of Perdew, Burke, and Ernzerhof (PBE1PBE). The solvent reaction field effect has been taken into account using the polarizable continuum model (PCM). 13C NMR shifts ‘order parameters’ (Δδ = |δ+δ|) and ‘diameters’ (ϕδ = |(δ+ + δ)/2 – δC|, where δ+, δ, and δC are the chemical shifts of coexisting phases and at the critical point respectively) have been calculated for each 13C signal close to TCL and processed using linear regression analysis of Δδ ~ |TTCL| and ϕδ ~ |TTCL| in the log–log plot. It has been shown that the critical index β can be determined most correctly using temperature dependences of the 13C NMR signals of C4 and C3,5 carbons of 2,6-lutidine. An evaluation of critical index of ‘diameter’ is rather imprecise because of problems of referencing of δC. The obtained ϕδ slope from C4 data (0.65±0.08) are closer to 2β than to 1 – α value. The results are discussed in the light of DFT data and within the concept of complete scaling.
Keywords: properties of molecules and molecular ions, line and band widths, shapes and shifts, density functional theory, phase separation, critical phenomena
PACS: 33.15.-e, 33.70.Jg, 76.60.-k, 64.75.+g, 82.60.-s
*The report presented at the 37th Lithuanian National Physics Conference, 11–13 June 2007, Vilnius, Lithuania.


KRIZINĖS DVINARIO VANDENS / 2,6-LUTIDINO TIRPALO ELGSENOS TYRIMAI TAIKANT 13C BMR SPEKTROSKOPIJĄ IR TANKIO FUNKCIONALO TEORIJĄ
K. Aidasa, A. Maršalkab, Z. Gdaniecc, V. Balevičiusb
aKopenhagos universiteto H.K. Erstedo instituto Chemijos fakultetas, Kopenhaga, Danija
bVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
cLenkijos mokslų akademijos Bioorganinės chemijos institutas, Poznanė, Lenkija

Pastaruoju metu dėl augančio susidomėjimo heterogeninių sistemų ir molekulių nano-spiečių formavimosi vyksmais vis svarbesniais tampa įvairių vandens darinių (vandens / organinių sandų tirpalų, sistemų su joniniais sandais ir kt.) krizinių savybių ir krizinių parametrų įvertinimai. Darbe buvo eksperimentiškai išmatuotos vandens / 2,6-lutidino tirpalo 13C BMR poslinkių priklausomybės nuo temperatūros žemutinio krizinio taško TCL = 306,0±0,5 K artumoje. Siekiant įvertinti vandenilinio ryšio (H ryšio) ir terpės reakcijos lauko indėlius išmatuotiesiems cheminiams poslinkiams, pasitelkus kvantinės mechanikos tankio funkcionalo teoriją (DFT), buvo apskaičiuoti 2,6-lutidino molekulės bei vandens ir 2,6-lutidino H-ryšio kompleksų vakuume ir įvairiuose tirpikliuose (acetonitrile, vandenyje) anglies magnetinio ekranavimo tenzoriai. Skaičiavimai buvo atlikti taikant modifikuotąjį hibridinį Perdew, Burke ir Ernzerhof funkcionalą (PBE1PBE) bei GIAO atominių orbitalių artinį. Į dielektrinės terpės reakcijos lauką atsižvelgta pritaikant poliarizuojamojo kontinuumo modelį (PCM). 13C BMR cheminių poslinkių „tvarkos parametras” Δδ = |δ+δ| ir „skersmuo” ϕδ = |(δ+ + δ)/2 – δC| (čia δ+, δ ir δC atitinkamai yra sambūvio fazių ir krizinio taško cheminiai poslinkiai) buvo apskaičiuoti visiems 13C BMR signalams ir apdoroti, atliekant priklausomybių Δδ ~ |TTCL| ir ϕδ ~ |TTCL| tiesinę regresijos analizę dvigubuose logaritminiuose (log–log) grafikuose. Parodyta, kad tiksliausiai šios sistemos tvarkos parametro krizinis rodiklis β gali būti nustatytas remiantis 2,6-lutidino C4 ir C3,5 anglies BMR signalų priklausomybėmis nuo temperatūros. „Skersmens” krizinę elgseną tirti yra labai sunku dėl atskaitos signalo problemų matuojant C. Priklausomybės log ϕδ ~ log |TTCL| polinkis 0,65±0,08, nustatytas remiantis C4 duomenimis, yra artimesnis 2β nei 1 – α vertėms. Gautosios išvados pagrindžiamos DFT skaičiavimų rezultatais ir aptariamos krizinių reiškinių pilno mastelio invariantiškumo požiūriu.


References / Nuorodos


[1] J.M. Sorensen and W. Arlt, Liquid–Liquid Equilibrium Data Collection. Dechema Chem. Data Ser., V. 5, Part 1 (DECHEMA, Frankfurt am Main, 1979)
[2] R.E. Goldstein, Substituent effects on intermolecular hydrogen bonding from lattice gas theory for lower critical points: Comparison with experiments on aqueous solutions of alkylpyridines, J. Chem. Phys. 79, 4439–4447 (1983),
http://dx.doi.org/10.1063/1.446329
[3] A.F. Kostko, M.A. Anisimov, and J.V. Sengers, Criticality in aqueous solutions of 3-methylpyridine and sodium bromide, Phys. Rev. E 70, 026118-1–11 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.026118
[4] T. Narayanan, A. Kumar, S. Venkatachalam, J. Jacob, and B.V. Parfulla, Exploration of a quadruple critical point in a quaternary liquid mixture, J. Chem. Phys. 102, 9653–9658 (1995),
http://dx.doi.org/10.1063/1.468784
[5] M. Wagner, O. Stanga, and W. Schroer, Tricriticality in the ternary system 3-methylpyridine / water / NaBr? The light-scattering intensity, Phys. Chem. Chem. Phys. 6, 580–589 (2004),
http://dx.doi.org/10.1039/B313564K
[6] J. Jacob, A. Kumar, S. Asokan, D. Sen, R. Chitra, and S. Mazunder, Evidence of clustering in an aqueous electrolyte solution: A small-angle X-ray scattering study, Chem. Phys. Lett. 304, 180–186 (1999),
http://dx.doi.org/10.1016/S0009-2614(99)00262-6
[7] V. Balevicius, Z. Gdaniec, and H. Fuess, NMR probing of structural peculiarities in ionic solutions close to critical point, J. Chem. Phys. 123, 224503-1–5 (2005),
http://dx.doi.org/10.1063/1.1989312
[8] V. Balevicius, N. Weiden, and Al. Weiss, 1H and 2H NMR studies of mixtures 2,6-lutidine / water near the lower critical solution point, Naturforsch. 47a, 583–587 (1992),
http://dx.doi.org/10.1515/zna-1992-0406
[9] V. Balevicius, V.J. Balevicius, K. Aidas, and H. Fuess, Determination of critical indices by 'slow' spectroscopy: NMR shifts by statistical thermodynamics and density functional theory calculations, J. Phys. Chem. B 111, 2523–2532 (2007),
http://dx.doi.org/10.1021/jp065477x
[10] M. Wagner, O. Stanga, and W. Schroer, Tricriticality in the ternary system 3-methylpyridine / water / NaBr? The coexistence curves, Phys. Chem. Chem. Phys. 5, 1225–1234 (2003),
http://dx.doi.org/10.1039/b212337a
[11] M. Wagner, O. Stanga, and W. Schroer, Tricriticality in the ternary system 3-methylpyridine / water / NaBr? Measurements of the viscosity, Phys. Chem. Chem. Phys. 4, 5300–5306 (2002),
http://dx.doi.org/10.1039/B206974A
[12] S. Lacelle, F. Cau, and L. Tremblay, Nuclear magnetic resonance studies of hydrodynamic effects in a critical binary mixture, J. Phys. Chem. 95, 7071–7078 (1991),
http://dx.doi.org/10.1021/j100171a065
[13] I. Papai and G. Jancso, Hydrogen bonding in methyl-substituted pyridine–water complexes: A theoretical study, J. Phys. Chem. A 104, 2132–2137 (2000),
http://dx.doi.org/10.1021/jp994094e
[14] M.C. Sicilia, C. Munoz-Caro, and A. Nino, Theoretical analysis of pyridine protonation in water clusters of increasing size, Chem. Phys. Chem. 6, 139–147 (2005),
http://dx.doi.org/10.1002/cphc.200400344
[15] T. Koedermann, F. Schulte, M. Huelsekopf, and R. Ludwig, Formation of water clusters in a hydrophobic solvent, Angew. Chem. Int. Ed. 42, 4904–4908 (2003),
http://dx.doi.org/10.1002/anie.200351438
[16] J. Kongsted, C.B. Nielsen, K.V. Mikkelsen, O. Christiansen, and K. Ruud, Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics / molecular mechanics models, J. Chem. Phys. 126, 034510-1–8 (2007),
http://dx.doi.org/10.1063/1.2424713
[17] Almanac, Bruker-Biospin (2005) pp. 32–33
[18] http://www.mestrec.com
[19] Origin 6.1, OriginLab Corporation,
http://www.OriginLab.com
[20] V. Balevicius, K. Aidas, J. Tamuliene, and H. Fuess, 1H NMR and DFT study of proton exchange in heterogeneous structures of pyridine-N-oxide / HCl / DCl / H2O, Spectrochim. Acta Part A 61, 835–839 (2005),
http://dx.doi.org/10.1016/j.saa.2004.06.007
[21] K. Aidas and V. Balevicius, Proton transfer in H-bond: Possibility of short-range order solvent effect, J. Mol. Liquids 127, 134–138 (2006)
http://dx.doi.org/10.1016/j.molliq.2006.03.036
[22] J.P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange–correlation hole of a many-electron system, Phys. Rev. B 54, 16533–16539 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.16533
[23] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 78, 1396 (1997),
http://dx.doi.org/10.1103/PhysRevLett.78.1396
[24] Gaussian 03, Revision B.05, M.J. Frisch, G.W. Trucks, H.B. Schlegel et al, Gaussian, Inc., Pittsburgh PA, 2003
[25] J.F. Hinton and K. Wolinski, in: Theoretical Treatments of Hydrogen Bonding, ed. D. Hadzi (John Wiley & Sons, Chichester, 1997) pp. 75–93
[26] V. Barone, M. Cossi, and J. Tomasi, Geometry optimization of molecular structures in solution by the polarizable continuum model, J. Comput. Chem. 19, 404–417 (1998),
http://dx.doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
[27] E. Cances, B. Mennucci, and J. Tomasi, Evaluation of solvent effects in isotropic and anisotropic dielectrics, and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation and numerical applications, J. Phys. Chem. 107, 3032–3041 (1997),
http://dx.doi.org/10.1021/jp971959k
[28] J. Wang, M.A. Anisimov, and J.V. Sengers, Closed solubility loops in liquid mixtures, Z. Phys. Chem. 219, 1273–1297 (2005),
http://dx.doi.org/10.1524/zpch.2005.219.9.1273
[29] V. Balevicius and K. Aidas, Temperature dependence of 1H and 17O NMR shifts of water: Entropy effect, Appl. Magn. Reson. 32 (2007) [in press],
http://dx.doi.org/10.1007/s00723-007-0021-4
[30] S.C. Greer, B.K. Das, A. Kumar, and E.S.R. Gopal, Critical behavior of the diameters of liquid–liquid coexistence curves, J. Chem. Phys. 79, 4545–4552 (1983),
http://dx.doi.org/10.1063/1.446369
[31] M.E. Fisher and G. Orkoulas, The Yang–Yang anomaly in fluid criticality: Experiment and scaling theory, Phys. Rev. Lett. 85, 696–699 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.696
[32] C.A. Cerdeirina, M.A. Anisimov, and J.V. Sengers, The nature of singular coexistence-curve diameters of liquid–liquid phase equilibria, Chem. Phys. Lett. 424, 414–419 (2006),
http://dx.doi.org/10.1016/j.cplett.2006.04.044