[PDF]    http://dx.doi.org/10.3952/lithjphys.47422

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 47, 513–521 (2007)


MODELLING OF BIOGENIC VOLATILE ORGANIC COMPOUND EMISSION FOR LITHUANIA*
V. Vėbra, S. Byčenkienė, K. Senuta, and V. Ulevičius
Institute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: ulevicv@ktl.mii.lt

Received 18 June 2007; accepted 21 November 2007

We present model estimates of biogenic emissions from forests in Lithuania. The numerical modelling of biogenic volatile organic compounds (BVOCs) monoterpene and isoprene was carried out using three-dimensional (3D) mesoscale meteorological and photochemical atmospheric models. Emission factors, combined with land cover data represented by the appropriate 11 Biogenic Emission Inventory System (BEIS) vegetation categories, along with environmental correction factors were used to derive emission fluxes of isoprene, monoterpene, other VOCs, and NO for Lithuania. Moreover, simulated data have been combined with BEIS data using a Geographic Information System (GIS) to appropriately represent the spatial distribution of BVOCs. Calculations showed that the coniferous trees are the main sources of biogenic emissions. The highest emission fluxes of biogenic VOC are estimated to be in the region of the south-southeastern Lithuania, which has the largest forest coverage in Lithuania and the major part of these forests consist of coniferous forests. The total simulated isoprene emission flux from Lithuania (65281 km2) reached 12710 kg h–1 in June and 18280 kg h–1 in July (approximately 34% from coniferous forests). On the other hand, monoterpene average emission flux from Lithuania was found to be 4080 kg h–1 in June and 5330 kg h–1 in July (approximately 50% from coniferous forests).
Keywords: BVOCs, emission, isoprene, monoterpene, numerical modelling, MM5 model
PACS: 92.60.Sz
*The report presented at the 37th Lithuanian National Physics Conference, 11–13 June 2007, Vilnius, Lithuania.


BIOGENINIŲ LAKIŲJŲ ORGANINIŲ JUNGINIŲ EMISIJOS LIETUVOJE MODELIAVIMAS
V. Vėbra, S. Byčenkienė, K. Senuta, V. Ulevičius
Fizikos institutas, Vilnius, Lietuva

Pagrindinis natūralus lakiųjų biogeninių organinių junginių šaltinis yra miškai. Lakiųjų biogeninių organinių junginių izopreno ir monoterpeno erdvinis pasiskirstymas Lietuvoje 2004 m. birželio–liepos mėnesiais įvertintas pritaikius Guenther modelį [13] su tam tikrais pakeitimais dėl vietinių ypatumų. Biogeninių organinių junginių erdvinei analizei atlikti buvo panaudoti emisijos koeficientai, žemės reljefas, BEIS augalų klasifikavimas pagal jų rūšį ir kiti vietiniai aplinkos parametrai. Nustatyta, kad biogeninių organinių junginių emisijos pasiskirstymas Lietuvoje netolygus: stebimas jos padidėjimas pietų–pietvakarių kryptimi ir ryškus sumažėjimas Vilniaus bei Kauno apylinkėse.


References / Nuorodos


[1] R. Atkinson and J. Arey, Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review, Atmos. Environ. 37, S197–S219 (2003),
http://dx.doi.org/10.1016/S1352-2310(03)00391-1
[2] A. Guenther, C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmerman, A global model of natural volatile organic compound emissions, J. Geophys. Res. 100(D5), 8873–8892 (1995),
http://dx.doi.org/10.1029/94JD02950
[3] A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P.I. Palmer, and C. Geron, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys. 6, 3181–3210 (2006),
http://dx.doi.org/10.5194/acp-6-3181-2006
[4] L.B. Otter, A. Guenther, J. Greenberg, and M.C. Scholes, Seasonal and spatial variations in biogenic hydrocarbon emissions from south African savannas and woodlands, Atmos. Environ. 36, 4265–4275 (2002),
http://dx.doi.org/10.1016/S1352-2310(02)00333-3
[5] E.C. Apel, D.D. Riemer, A. Hills, W. Baugh, J. Orlando, I. Faloona, D. Tan, W. Brune, B. Lamb, H. Westberg, M.A. Carroll, T.Thornberry, and C.D. Geron, Measurement and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET site during the 1998 Intensive, J. Geophys. Res. 107(D3), ACH 7-1–15 (2002),
http://dx.doi.org/10.1029/2000JD000225
[6] H.J. Rinne, A. Guenther, and J.P. Greenberg, Isoprene and monoterpene fluxes measured above Amazonian rainforestand their dependence on light and temperature, Atmos. Environ. 36, 2421–2426 (2002),
http://dx.doi.org/10.1016/S1352-2310(01)00523-4
[7] D.R. Bowling, A.A. Turnipseed, A.C. Delany, D.D. Baldocchi, J.P. Greenberg, and R.K. Monson, The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and other biologicaltrace gases, Oecologia 116, 306–315 (1998),
http://dx.doi.org/10.1007/s004420050592
[8] J. Fuentes, M. Lerdau, R. Atkinson, D. Baldocchi, J. Bottenheim, P. Ciccioli, B. Lamb, C. Geron, L. Gu, A. Guenther, T. Sharkey, and W. Stockwell, Biogenic hydrocarbons in the atmospheric boundary layer: A review, Bull. Am. Meteor. Soc. 81, 1537–1575 (2000),
http://dx.doi.org/10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2
[9] A.H. Goldstein, M.L. Goulden, W.J. Munger, S.C. Wofsy, and C.D Geron, Seasonal course of isoprene emissions from a midlatitude deciduous forest, J. Geophys. Res. 103(D23), 31045–31056 (1998),
http://dx.doi.org/10.1029/98JD02708
[10] J.G. Isebrands, A.B. Guenther, P. Harley, D. Helmig, L. Klinger, L. Vierling, P. Zimmerman, and C. Geron, Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA, Atmos. Environ. 33, 2527–2536 (1999),
http://dx.doi.org/10.1016/S1352-2310(98)00250-7
[11] U. Kuhn, S. Rottenberger, T. Biesenthal, A. Wolf, G. Schebeske, P. Ciccioli, E. Brancaleoni, M. Frattoni, T. M. Tavares, and J. Kesselmeier, Isoprene and monoterpene emissions of Amazonian tree species during the wet season: Direct and indirect investigations on controlling environmental functions, J. Geophys. Res. - Atmos. 107(D20), 8071 (2002),
http://dx.doi.org/10.1029/2001JD000978
[12] BEIS3 Version 0.9, United States Environmental Protection Agency,
http://www.epa.gov/AMD/biogen.html
[13] A.B. Guenther, P.R. Zimmerman, P.C. Harley, R.K. Monson, and R. Fall, Isoprene and monoterpene emission rate variability – model evaluations and sensitivity analyses, J. Geophys. Res. - Atmos. 98(D7), 12609–12617 (1993),
http://dx.doi.org/10.1029/93JD00527
[14] R.K. Monson, C.H. Jaeger, W.W. Adams, E.M. Driggers, G.M. Silver, and R. Fall, Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol. 98, 1175–1180 (1992),
http://dx.doi.org/10.1104/pp.98.3.1175
[15] R.J. Fischbach, W. Zimmer, and J.P. Schnitzler, Isolation and functional analysis of a cDNA encoding amyrcene synthase from holm oak (Quercus ilex L.), Eur. J. Biochem. 268, 5633–5638 (2001),
http://dx.doi.org/10.1046/j.1432-1033.2001.02519.x
[16] A. Guenther, Seasonal and spatial variations in natural volatile organic compound emissions, Ecol. Appl. 7, 34–45 (1997),
http://dx.doi.org/10.1890/1051-0761(1997)007[0034:SASVIN]2.0.CO;2
[17] B. Lamb, D. Gay, H. Westberg, and T. Pierce, A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model, Atmos. Environ. 27A, 1673–1690 (1993),
http://dx.doi.org/10.1016/0960-1686(93)90230-V
[18] A. Guenther, R. Monson, and R. Fall, Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development, J. Geophys. Res. 26A, 10799–10808 (1991),
http://dx.doi.org/10.1029/91JD00960
[19] B. Lamb, E. Allwine, S. Dilts, H. Westberg, T. Pierce, C. Geron, D. Baldocchi, A. Guenther, L. Klinger, P. Harley, and P. Zimmerman, Evaluation of forest canopy models for estimating isoprene emissions, J. Geophys. Res. 101(D17), 22787–22798 (1996),
http://dx.doi.org/10.1029/96JD00056
[20] A. Guenther, P. Zimmerman, and M. Wildermuth, Natural volatile organic compound emission rate estimates for U.S. woodland landscapes, Atmos. Environ. 28, 1197–1210 (1994),
http://dx.doi.org/10.1016/1352-2310(94)90297-6
[21] D. Simpson, W. Winiwarter, G. Borjesson, S. Cinderby, A. Ferreiro, A. Guenther, C.N. Hewitt, R. Janson, M.A.K. Khalil, S. Owen, T.E. Pierce, H. Puxbaum, M. Shearer, U. Skiba, R. Steinbrecher, L. Tarrason, and M.G. Oquist, Inventorying emissions from nature in Europe, J. Geophys. Res. - Atmos. 104(D7), 8113–8152 (1999),
http://dx.doi.org/10.1029/98JD02747
[22] J. Novak and T. Pierce, Natural emissions of oxidant precursors. Water Air Soil Poll. 67, 57–77 (1993),
http://dx.doi.org/10.1007/BF00480814
[23] E. Williams, A. Guenther, and F. Fehsenfeld, An inventory of nitric oxide emissions from soils in the United States, J. Geophys. Res. 97, 7511–7519 (1992),
http://dx.doi.org/10.1029/92JD00412