[PDF]
http://dx.doi.org/10.3952/lithjphys.47422
Open access article / Atviros prieigos straipsnis
Lith. J. Phys. 47, 513–521 (2007)
MODELLING OF BIOGENIC VOLATILE
ORGANIC COMPOUND EMISSION FOR LITHUANIA*
V. Vėbra, S. Byčenkienė, K. Senuta, and V. Ulevičius
Institute of Physics, Savanorių 231, LT-02300 Vilnius,
Lithuania
E-mail: ulevicv@ktl.mii.lt
Received 18 June 2007; accepted 21
November 2007
We present model estimates of
biogenic emissions from forests in Lithuania. The numerical
modelling of biogenic volatile organic compounds (BVOCs)
monoterpene and isoprene was carried out using three-dimensional
(3D) mesoscale meteorological and photochemical atmospheric
models. Emission factors, combined with land cover data
represented by the appropriate 11 Biogenic Emission Inventory
System (BEIS) vegetation categories, along with environmental
correction factors were used to derive emission fluxes of
isoprene, monoterpene, other VOCs, and NO for Lithuania. Moreover,
simulated data have been combined with BEIS data using a
Geographic Information System (GIS) to appropriately represent the
spatial distribution of BVOCs. Calculations showed that the
coniferous trees are the main sources of biogenic emissions. The
highest emission fluxes of biogenic VOC are estimated to be in the
region of the south-southeastern Lithuania, which has the largest
forest coverage in Lithuania and the major part of these forests
consist of coniferous forests. The total simulated isoprene
emission flux from Lithuania (65281 km2) reached 12710
kg h–1 in June and 18280 kg h–1 in July
(approximately 34% from coniferous forests). On the other hand,
monoterpene average emission flux from Lithuania was found to be
4080 kg h–1 in June and 5330 kg h–1 in July
(approximately 50% from coniferous forests).
Keywords: BVOCs, emission, isoprene,
monoterpene, numerical modelling, MM5 model
PACS: 92.60.Sz
*The report presented at the 37th Lithuanian National Physics
Conference, 11–13 June 2007, Vilnius, Lithuania.
BIOGENINIŲ LAKIŲJŲ ORGANINIŲ
JUNGINIŲ EMISIJOS LIETUVOJE MODELIAVIMAS
V. Vėbra, S. Byčenkienė, K. Senuta, V. Ulevičius
Fizikos institutas, Vilnius, Lietuva
Pagrindinis natūralus lakiųjų biogeninių
organinių junginių šaltinis yra miškai. Lakiųjų biogeninių
organinių junginių izopreno ir monoterpeno erdvinis pasiskirstymas
Lietuvoje 2004 m. birželio–liepos mėnesiais įvertintas pritaikius
Guenther modelį [13] su tam tikrais pakeitimais dėl vietinių
ypatumų. Biogeninių organinių junginių erdvinei analizei atlikti
buvo panaudoti emisijos koeficientai, žemės reljefas, BEIS augalų
klasifikavimas pagal jų rūšį ir kiti vietiniai aplinkos
parametrai. Nustatyta, kad biogeninių organinių junginių emisijos
pasiskirstymas Lietuvoje netolygus: stebimas jos padidėjimas
pietų–pietvakarių kryptimi ir ryškus sumažėjimas Vilniaus bei
Kauno apylinkėse.
References / Nuorodos
[1] R. Atkinson and J. Arey, Gas-phase tropospheric chemistry of
biogenic volatile organic compounds: A review, Atmos. Environ. 37,
S197–S219 (2003),
http://dx.doi.org/10.1016/S1352-2310(03)00391-1
[2] A. Guenther, C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T.
Graedel, P. Harley, L. Klinger, M. Lerdau, W. McKay, T. Pierce, B.
Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P.
Zimmerman, A global model of natural volatile organic compound
emissions, J. Geophys. Res. 100(D5), 8873–8892 (1995),
http://dx.doi.org/10.1029/94JD02950
[3] A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P.I. Palmer, and
C. Geron, Estimates of global terrestrial isoprene emissions using
MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos.
Chem. Phys. 6, 3181–3210 (2006),
http://dx.doi.org/10.5194/acp-6-3181-2006
[4] L.B. Otter, A. Guenther, J. Greenberg, and M.C. Scholes,
Seasonal and spatial variations in biogenic hydrocarbon emissions
from south African savannas and woodlands, Atmos. Environ. 36,
4265–4275 (2002),
http://dx.doi.org/10.1016/S1352-2310(02)00333-3
[5] E.C. Apel, D.D. Riemer, A. Hills, W. Baugh, J. Orlando, I.
Faloona, D. Tan, W. Brune, B. Lamb, H. Westberg, M.A. Carroll,
T.Thornberry, and C.D. Geron, Measurement and interpretation of
isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone
mixing ratios at the PROPHET site during the 1998 Intensive, J.
Geophys. Res. 107(D3), ACH 7-1–15 (2002),
http://dx.doi.org/10.1029/2000JD000225
[6] H.J. Rinne, A. Guenther, and J.P. Greenberg, Isoprene and
monoterpene fluxes measured above Amazonian rainforestand their
dependence on light and temperature, Atmos. Environ. 36,
2421–2426 (2002),
http://dx.doi.org/10.1016/S1352-2310(01)00523-4
[7] D.R. Bowling, A.A. Turnipseed, A.C. Delany, D.D. Baldocchi, J.P.
Greenberg, and R.K. Monson, The use of relaxed eddy accumulation to
measure biosphere-atmosphere exchange of isoprene and other
biologicaltrace gases, Oecologia 116, 306–315 (1998),
http://dx.doi.org/10.1007/s004420050592
[8] J. Fuentes, M. Lerdau, R. Atkinson, D. Baldocchi, J. Bottenheim,
P. Ciccioli, B. Lamb, C. Geron, L. Gu, A. Guenther, T. Sharkey, and
W. Stockwell, Biogenic hydrocarbons in the atmospheric boundary
layer: A review, Bull. Am. Meteor. Soc. 81, 1537–1575
(2000),
http://dx.doi.org/10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2
[9] A.H. Goldstein, M.L. Goulden, W.J. Munger, S.C. Wofsy, and C.D
Geron, Seasonal course of isoprene emissions from a midlatitude
deciduous forest, J. Geophys. Res. 103(D23), 31045–31056
(1998),
http://dx.doi.org/10.1029/98JD02708
[10] J.G. Isebrands, A.B. Guenther, P. Harley, D. Helmig, L.
Klinger, L. Vierling, P. Zimmerman, and C. Geron, Volatile organic
compound emission rates from mixed deciduous and coniferous forests
in Northern Wisconsin, USA, Atmos. Environ. 33, 2527–2536
(1999),
http://dx.doi.org/10.1016/S1352-2310(98)00250-7
[11] U. Kuhn, S. Rottenberger, T. Biesenthal, A. Wolf, G. Schebeske,
P. Ciccioli, E. Brancaleoni, M. Frattoni, T. M. Tavares, and J.
Kesselmeier, Isoprene and monoterpene emissions of Amazonian tree
species during the wet season: Direct and indirect investigations on
controlling environmental functions, J. Geophys. Res. - Atmos.
107(D20), 8071 (2002),
http://dx.doi.org/10.1029/2001JD000978
[12] BEIS3 Version 0.9, United States Environmental
Protection Agency,
http://www.epa.gov/AMD/biogen.html
[13] A.B. Guenther, P.R. Zimmerman, P.C. Harley, R.K. Monson, and R.
Fall, Isoprene and monoterpene emission rate variability – model
evaluations and sensitivity analyses, J. Geophys. Res. - Atmos. 98(D7),
12609–12617 (1993),
http://dx.doi.org/10.1029/93JD00527
[14] R.K. Monson, C.H. Jaeger, W.W. Adams, E.M. Driggers, G.M.
Silver, and R. Fall, Relationships among isoprene emission rate,
photosynthesis, and isoprene synthase activity as influenced by
temperature. Plant Physiol. 98, 1175–1180 (1992),
http://dx.doi.org/10.1104/pp.98.3.1175
[15] R.J. Fischbach, W. Zimmer, and J.P. Schnitzler, Isolation and
functional analysis of a cDNA encoding amyrcene synthase from holm
oak (Quercus ilex L.), Eur. J. Biochem. 268,
5633–5638 (2001),
http://dx.doi.org/10.1046/j.1432-1033.2001.02519.x
[16] A. Guenther, Seasonal and spatial variations in natural
volatile organic compound emissions, Ecol. Appl. 7, 34–45
(1997),
http://dx.doi.org/10.1890/1051-0761(1997)007[0034:SASVIN]2.0.CO;2
[17] B. Lamb, D. Gay, H. Westberg, and T. Pierce, A biogenic
hydrocarbon emission inventory for the U.S.A. using a simple forest
canopy model, Atmos. Environ. 27A, 1673–1690 (1993),
http://dx.doi.org/10.1016/0960-1686(93)90230-V
[18] A. Guenther, R. Monson, and R. Fall, Isoprene and monoterpene
emission rate variability: Observations with eucalyptus and emission
rate algorithm development, J. Geophys. Res. 26A,
10799–10808 (1991),
http://dx.doi.org/10.1029/91JD00960
[19] B. Lamb, E. Allwine, S. Dilts, H. Westberg, T. Pierce, C.
Geron, D. Baldocchi, A. Guenther, L. Klinger, P. Harley, and P.
Zimmerman, Evaluation of forest canopy models for estimating
isoprene emissions, J. Geophys. Res. 101(D17), 22787–22798
(1996),
http://dx.doi.org/10.1029/96JD00056
[20] A. Guenther, P. Zimmerman, and M. Wildermuth, Natural volatile
organic compound emission rate estimates for U.S. woodland
landscapes, Atmos. Environ. 28, 1197–1210 (1994),
http://dx.doi.org/10.1016/1352-2310(94)90297-6
[21] D. Simpson, W. Winiwarter, G. Borjesson, S. Cinderby, A.
Ferreiro, A. Guenther, C.N. Hewitt, R. Janson, M.A.K. Khalil, S.
Owen, T.E. Pierce, H. Puxbaum, M. Shearer, U. Skiba, R.
Steinbrecher, L. Tarrason, and M.G. Oquist, Inventorying emissions
from nature in Europe, J. Geophys. Res. - Atmos. 104(D7),
8113–8152 (1999),
http://dx.doi.org/10.1029/98JD02747
[22] J. Novak and T. Pierce, Natural emissions of oxidant
precursors. Water Air Soil Poll. 67, 57–77 (1993),
http://dx.doi.org/10.1007/BF00480814
[23] E. Williams, A. Guenther, and F. Fehsenfeld, An inventory of
nitric oxide emissions from soils in the United States, J. Geophys.
Res. 97, 7511–7519 (1992),
http://dx.doi.org/10.1029/92JD00412