[PDF]   
    http://dx.doi.org/10.3952/lithjphys.49104
    
    Open access article / Atviros prieigos straipsnis
    
    Lith. J. Phys. 49, 91–96 (2009)
    
    
    MEASUREMENT AND NUMERICAL
        SIMULATION OF TWO-PHASE PLASMA FLOWIN PLASMA SPRAY PROCESS
      V. Grigaitienė, V. Valinčius, and R. Kėželis
      Lithuanian Energy Institute, Breslaujos 3, LT-35444 Kaunas,
        Lithuania
      E-mail: vika@mail.lei.lt
    
    
    Received 26 September 2008; revised
      10 February 2009; accepted 19 March 2009
    
    
    Interaction of plasma jet with
      hard ceramic particles was numerically investigated by means of
      “Jets&Poudres" software improved and applied to model a
      specic plasma jet. The data on free plasma jet, with injected
      dispersed particles, its temperature and velocity distribution, as
      well as particles' melting state are presented. It was found that
      dispersed particles achieve higher temperature and velocity values
      than plasma gas at dimensionless distance x/d =
      8–12 from exhaust nozzle. Numerical investigations were compared
      with experimental data. The results show that applied numerical
      model of two-phase high temperature jet calculation is in good
      agreement with experimental data and could be used to determine
      the optimal plasma spray parameters for coatings with desirable
      characteristics.
    
    Keywords: plasma jet, plasma spraying,
      dispersed particles, coating synthesis
    
    PACS: 68.47.Gh, 68.55.-a, 68.90.+g
    
    
    DVIFAZIO PLAZMOS SRAUTO
        MATAVIMAI IR SKAITMENINIS MODELIAVIMAS PLAZMINIO PURŠKIMO
        PROCESE
      V. Grigaitienė, V. Valinčius, R. Kėželis
      Lietuvos energetikos institutas, Kaunas, Lietuva
      
    
    Skaitmeniniai dvifazio plazmos srauto tyrimai
      buvo atlikti naudojant „Jets&Poudres“ programą, kuri yra
      specialiai pritaikyta modeliuoti plazmos srauto tekėjimą bei joje
      vykstančius procesus. Gauti dvifazio srauto modeliavimo rezultatai
      palyginti su eksperimentiniais duomenimis. Eksperimentinį
      plazminio purškimo įrenginį sudaro dispersinių dalelių maitinimo
      ir dozavimo sistema bei linijinis nuolatinės srovės 30–40 kW
      galios plazmos generatorius (PG) su karštu katodu ir laiptuotu
      anodu. Į aukštos temperatūros srautą tiekiamos įvairios medžiagos
      ar jų mišiniai: anglis, kaolinas, aliuminio, vario, cirkonio
      oksidai ir kt. Nustatyta, kad dispersinių dalelių temperatūra ties
      x/d = 8–12 viršija vidutinę dujų temperatūrą ir yra
      1200–1600 K. Tiriant dalelių greičio kitimus priklausomai nuo
      nuskrieto atstumo, galima pastebėti, kad mažiausios dalelės per tą
      patį laiką pasiekia didesnį greitį. Dalelių greitis stabilizuojasi
      ties x/d = 8 nuo PG ištekėjimo angos ir beveik
      nepriklauso nuo jų dydžio. Tai rodo, kad paruoštas dengiamas
      substratas ties x/d = 8–12 bus bombarduojamas
      pastoviu jėgos impulsu, dalelių kinetinė energija bus maksimali.
      Gauti rezultatai parodė, kad skaitmeninio modeliavimo rezultatai
      neblogai sutampa su eksperimentų duomenimis, todėl gali būti
      naudojami nustatant optimalius plazmos purškimo parametrus,
      gaminant pageidaujamų savybių dangas.
    
    
      
      References / Nuorodos
    
    [1] P. Fouchais, G. Montavon, M. Vardelle, and J. Cedelle,
    Developments in direct current plasma spraying, Surf. Coatings
    Technol. 201, 1908–1921 (2006), 
    http://dx.doi.org/10.1016/j.surfcoat.2006.04.033
    [2] K. Landes, Diagnostics in plasma spraying techniques, Surf.
    Coatings Technol. 201, 1948–1954 (2006), 
    http://dx.doi.org/10.1016/j.surfcoat.2006.04.036
    [3] M. Garbero, M. Vanni, and U. Fritsching, Gas / surface heat
    transfer in spray deposition processes, Int. J. Heat Fluid Flow 27,
    105–122 (2006), 
    http://dx.doi.org/10.1016/j.ijheatfluidflow.2005.04.003
    [4] F.B. Yeh, The effect of plasma characteristics on the melting
    time at the front surface of a film on a substrate: An exact
    solution, Int. J. Heat Mass Transfer 49, 297–306 (2006), 
    http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.06.024
    [5] H. Kersten, H. Deutsch, H. Steffen, G.M.W. Kroesen, and M.
    Hippler, The energy balance at substrate surfaces during plasma
    processes, Vacuum 63, 385–431 (2001), 
    http://dx.doi.org/10.1016/S0042-207X(01)00350-5
    [6] G. Delluc, G. Mariaux, A. Vardelle, P. Fauchais, and B.
    Pateyron, A numerical tool for plasma spraying. Part I: Modeling of
    plasma jet and particle behavior, in: Abstracts and full paper
      CD of the ISPC 16, Taormina, Italy, June 22–27, 2003, 6 p.
    [7] T&TWinner can be download from 
    http://ttwinner.free.fr/
    [8] R. Kėželis, P. Valatkevičius, and A. Ambrazevičius, Velocity and
    temperature distribution in the entrance region of tube with high
    temperature turbulent air flow, Trudy Akademii Nauk Litovskoy SSR B
    6(97), 57–61 (1976) [in Russian].
    [9] V. Valinčius, P. Valatkevičius, and L. Marcinauskas, Preparation
    of hard coatings employing nonequilibrium plasma under atmospheric
    and reduced pressure, in: 16th International Symposium on Plasma
      Chemistry ISPC-16: Proceedings, Taormina, Italy, June 22–27,
    2003 (University of Bari, Italy, 2003) pp. 1–6
    [10] V. Valinčius, V. Krušinskaitė, P. Valatkevičius, V. Valinčiūtė,
    and L. Marcinauskas, Electric and thermal characteristics of the
    linear, sectional DC plasma generator, Plasma Sources Sci. Technol.
    13, 199–206 (2004), 
    http://dx.doi.org/10.1088/0963-0252/13/2/002
    [11] V. Valinčiūtė, Research on Plasma Spray Pyrolysis in the
      Processes of Coatings Synthesis, Summary of the doctoral
    dissertation (Kaunas University of Technology, 2007)
    [12] G. Delluc, H. Ageorges, B. Pateyron, and P. Fauchais, Fast
    modelling of plasma jet and particle behaviours in spray conditions,
    High Temp. Mater. Processes 9, 211–226 (2005), 
    http://dx.doi.org/10.1615/HighTempMatProc.v9.i2.30
    [13] T. Klocker, M. Dorfmann, and T.W. Clyne, Process modelling to
    optimise the structure of hollow zirconia particles for use in
    plasma sprayed thermal barrier coatings, in: ITSC 2001, eds.
    C.C. Berndt, K.A. Khor, and E.F. Lugscheider (ASM, Singapore, 2001)
    pp. 149–155
    [14] P. Valatkevičius, V. Krušinskaitė, V. Valinčiūtė, and V.
    Valinčius, Preparation of catalytic coatings for heterogeneous
    catalysts employing atmospheric pressure non-equilibrium plasma,
    Surf. Coatings Technol. 174–175, 1106–1110 (2003), 
    http://dx.doi.org/10.1016/S0257-8972(03)00617-0
    [15] K. Brinkiene and R. Kezelis, Effect of alumina addition on the
    microstructure of plasma sprayed YSZ, J. Eur. Ceram. Soc. 25,
    2181–2184 (2005), 
    http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.027