[PDF]    http://dx.doi.org/10.3952/lithjphys.50101

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 111–120 (2010)


EFFICIENT 4-FOLD SELF-COMPRESSION OF MILLIJOULE PULSES FROM A 1.5-μm OPTICAL PARAMETRIC CHIRPED-PULSE AMPLIFIER
S. Ališauskasa, V. Smilgevičiusa, A.P.  Piskarskasa, O.D. Mückeb, A.J. Verhoefb, A. Pugžlysb, A. Baltuškab, J. Pociusa,c, L. Giniūnasc, R. Danieliusc, and N. Forgetd
aDepartment of Quantum Electronics, Vilnius University, Saul˙etekio 9, LT-10222 Vilnius, Lithuania
E-mail: skirmantas.alisauskas@ff.vu.lt
bPhotonics Institute, Vienna University of Technology, Gusshausstr. 27-387, A-1040 Vienna, Austria
cLight Conversion Ltd., P/O Box 1485, Saulėtekio 10, LT-10223 Vilnius, Lithuania
dFastlite, Bâtiment 403, Ecole Polytechnique, F-91128 Palaiseau, France

Received 26 October 2009; revised 29 December 2009; accepted 19 March 2010

We discuss a four-stage optical parametric chirped-pulse amplifier that delivers carrier-envelope phase-stable 1.5 μm pulses with energies up to 12.5 mJ before recompression. The system (previously reported in Opt. Lett. 34, 2498 (2009)) is based on a fusion of femtosecond diode-pumped solid-state Yb technology and a picosecond 100-mJ Nd:YAG pump amplifier. Pulses with 62 nm bandwidth are recompressed to a 74.4 fs duration, which is close to the transform limit. Here, to show the way towards a TW-peak-power single-cycle IR source, we perform detailed investigations of single-filament IR supercontinuum generation via femtosecond filamentation in noble gases. Depending on the experimental conditions, two filamentation regimes can be achieved: (i) in the filamentation regime without plasma-induced pulse self-compression, we generate 4-mJ 600-nm-wide IR supercontinua of high spatial quality supporting 8-fs pulse durations, which corresponds to less than two optical cycles at 1.5 μm; (ii) in the self-compression regime, we demonstrate self-compression of 2.2 mJ pulses down to 19.8 fs duration in a single filament in argon with a 1.5 mJ output energy and 66% energy throughput. By adapting the experimental conditions, further energy upscaling of the self-compressed pulses seems feasible.
Keywords: optical parametric amplification, filamentation, pulse self-compression, intense few-cycle infrared pulses
PACS: 42.65.Yj, 42.65.Re


FAZIŠKAI MODULIUOTŲ MILIDŽAULINĖS ENERGIJOS IMPULSŲ PARAMETRINIS STIPRINTUVAS 1,5 μm SRITYJE SU IMPULSŲ SAVISPŪDA INERTINĖSE DUJOSE
S. Ališauskasa, V. Smilgevičiusa, A.P.  Piskarskasa, O.D. Mückeb, A.J. Verhoefb, A. Pugžlysb, A. Baltuškab, J. Pociusa,c, L. Giniūnasc, R. Danieliusc, N. Forgetd
aVilniaus universitetas, Vilnius, Lietuva
bVienos technologijos universiteto Fotonikos institutas, Viena, Austrija
cUAB „Šviesos konversija“, Vilnius, Lietuva
d Fastlite, Palaiseau, Prancūzija

Pademonstruotas stabilizuotos fazės keturių pakopų II fazinio sinchronizmo tipo faziškai moduliuotų impulsų parametrinis stiprintuvas 1,5 μm srityje. Jo impulso energija prieš kompresiją siekia 12,5 mJ. Parametrinio stiprintuvo sistema sudaryta iš femtosekundinio diodais kaupinamo Yb:KGV ir pikosekundinio lempomis kaupinamo 100 mJ Nd:IAG lazerių. Parametriškai sustiprinti impulsai, kurių spektro plotis pusaukštyje siekia 62 nm, buvo suspausti iki 74,4 fs, t. y. beveik iki spektriškai riboto impulso. Norint atskleisti galimybę generuoti kelių ciklų trukmės TW eilės smailinės galios impulsus IR srityje, buvo sugeneruotas 4 mJ 600 nm spektro pločio filamentas, kuris atitiktų 8 fs spektriškai ribotą impulsą. Taip pat argono dujose pademonstruota 2,2 mJ energijos impulso filamentacija su savispūda iki 19,8 fs pavienėje gijoje, 66 % energijos pralaidumu ir siekianti 1,5 mJ energiją išvade.


References / Nuorodos


[1] A. Dubietis, R. Butkus, and A.P. Piskarskas, IEEE J. Sel. Top. Quant. Electron. 12, 163–172 (2006),
http://dx.doi.org/10.1109/JSTQE.2006.871962
[2] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163–234 (2009),
http://dx.doi.org/10.1103/RevModPhys.81.163
[3] T. Fuji, N. Ishii, C.Y. Teisset, X. Gu, T. Metzger, A. Baltuška, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, Opt. Lett. 31, 1103–1105 (2006),
http://dx.doi.org/10.1364/OL.31.001103
[4] X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, Opt. Express 17, 62–69 (2009),
http://dx.doi.org/10.1364/OE.17.000062
[5] C. Vozzi, G. Cirmi, C. Manzoni, E. Benedetti, F. Calegari, G. Sansone, S. Stagira, O. Svelto, S. De Silvestri, M. Nisoli, and G. Cerullo, Opt. Express 14, 10109–10116 (2006),
http://dx.doi.org/10.1364/OE.14.010109
[6] C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, Opt. Lett. 32, 2957–2959 (2007),
http://dx.doi.org/10.1364/OL.32.002957
[7] J. Moses, S.-W. Huang, K.-H. Hong, O.D. Mücke, E.L. Falcão-Filho, A. Benedick, F.Ö. Ilday, A. Dergachev, J.A. Bolger, B.J. Eggleton, and F.X. Kärtner, Opt. Lett. 34, 1639–1641 (2009),
http://dx.doi.org/10.1364/OL.34.001639
[8] E.J. Takahashi, T. Kanai, Y. Nabekawa, and K. Midorikawa, Appl. Phys. Lett. 93, 041111-1–3 (2008),
http://dx.doi.org/10.1063/1.2960352
[9] E.J. Takahashi, T. Kanai, K.L. Ishikawa, Y. Nabekawa, and K. Midorikawa, Phys. Rev. Lett. 101, 253901-1–4 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.253901
[10] O.D. Mücke, D. Sidorov, P. Dombi, A. Pugžlys, A. Baltuška, S. Ališauskas, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius, and N. Forget, Opt. Lett. 34, 118–120 (2009),
http://dx.doi.org/10.1364/OL.34.000118
[11] O.D. Mücke, S. Ališauskas, A.J. Verhoef, A. Pugžlys, A. Baltuška, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius, and N. Forget, Opt. Lett. 34, 2498–2500 (2009),
http://dx.doi.org/10.1364/OL.34.002498
[12] C.I. Blaga, F. Catoire, P. Colosimo, G.G. Paulus, H.G. Muller, P. Agostini, and L.F. DiMauro, Nature Phys. 5, 335–338 (2009),
http://dx.doi.org/10.1038/nphys1228
[13] J. Tate, T. Auguste, H.G. Muller, P. Salières, P. Agostini, and L.F. DiMauro, Phys. Rev. Lett. 98, 013901-1–4 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.013901
[14] P. Colosimo, G. Doumy, C.I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A.M. March, G.G. Paulus, H.G. Muller, P. Agostini, and L.F. DiMauro, Nature Phys. 4, 386–389 (2008),
http://dx.doi.org/10.1038/nphys914
[15] G. Doumy, J. Wheeler, C. Roedig, R. Chirla, P. Agostini, and L.F. DiMauro, Phys. Rev. Lett. 102, 093002-1–4 (2009),
http://dx.doi.org/10.1103/PhysRevLett.102.093002
[16] P. Agostini and L.F. DiMauro, Contemp. Phys. 49, 179–197 (2008),
http://dx.doi.org/10.1080/00107510802221630
[17] B. Sheehy, J.D.D. Martin, L.F. DiMauro, P. Agostini, K.J. Schafer, M.B. Gaarde, and K.C. Kulander, Phys. Rev. Lett. 83, 5270–5273 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.5270
[18] B. Shan and Z. Chang, Phys. Rev. A 65, 011804(R)-1–4 (2001),
http://dx.doi.org/10.1103/PhysRevA.65.011804
[19] A. Gordon and F.X. Kärtner, Opt. Express 13, 2941–2947 (2005),
http://dx.doi.org/10.1364/OPEX.13.002941
[20] T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I.P. Christov, M.M. Murnane, and H.C. Kapteyn, Proc. Natl. Acad. Sci. USA 106, 10516–10521 (2009),
http://dx.doi.org/10.1073/pnas.0903748106
[21] K. Schiessl, K.L. Ishikawa, E. Persson, and J. Burgdörfer, Phys. Rev. Lett. 99, 253903-1–4 (2007),
http://dx.doi.org/10.1103/PhysRevLett.99.253903
[22] A.D. Shiner, C. Trallero-Herrero, N. Kajumba, H.-C. Bandulet, D. Comtois, F. Légaré, M. Giguère, J.-C. Kieffer, P.B. Corkum, and D.M. Villeneuve, Phys. Rev. Lett. 103, 073902-1–4 (2009),
http://dx.doi.org/10.1103/PhysRevLett.103.073902
[23] M.V. Frolov, N.L. Manakov, T.S. Sarantseva, M.Y. Emelin, M.Y. Ryabikin, and A.F. Starace, Phys. Rev. Lett. 102, 243901-1–4 (2009),
http://dx.doi.org/10.1103/PhysRevLett.102.243901
[24] T. Popmintchev, M.-C. Chen, O. Cohen, M.E. Grisham, J.J. Rocca, M.M. Murnane, and H.C. Kapteyn, Opt. Lett. 33, 2128–2130 (2008),
http://dx.doi.org/10.1364/OL.33.002128
[25] V.S. Yakovlev, M. Ivanov, and F. Krausz, Opt. Express 15, 15351–15364 (2007),
http://dx.doi.org/10.1364/OE.15.015351
[26] E.L. Falcão-Filho, V.M. Gkortsas, A. Gordon, and F.X. Kärtner, Opt. Express 17, 11217–11229 (2009),
http://dx.doi.org/10.1364/OE.17.011217
[27] A.L. Cavalieri, N. Müller, T. Uphues, V.S. Yakovlev, A. Baltuška, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P.M. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, Nature 449, 1029–1032 (2007),
http://dx.doi.org/10.1038/nature06229
[28] L. Miaja-Avila, G. Saathoff, S. Mathias, J. Yin, C. La-o-vorakiat, M. Bauer, M. Aeschlimann, M.M. Murnane, and H.C. Kapteyn, Phys. Rev. Lett. 101, 046101-1–4 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.046101
[29] J. Seres, E. Seres, A.J. Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, Nature 433, 596 (2005),
http://dx.doi.org/10.1038/433596a
[30] M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793–2795 (1996),
http://dx.doi.org/10.1063/1.116609
[31] M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, Opt. Lett. 22, 522–524 (1997),
http://dx.doi.org/10.1364/OL.22.000522
[32] C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, Appl. Phys. B 79, 673–677 (2004),
http://dx.doi.org/10.1007/s00340-004-1650-z
[33] C.P. Hauri, R.B. Lopez-Martens, C.I. Blaga, K.D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A.M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L.F. DiMauro, and E.P. Power, Opt. Lett. 32, 868–870 (2007),
http://dx.doi.org/10.1364/OL.32.000868
[34] A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Appl. Phys. Lett. 86, 111116-1–3 (2005),
http://dx.doi.org/10.1063/1.1883706
[35] G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, Opt. Lett. 31, 274–276 (2006),
http://dx.doi.org/10.1364/OL.31.000274
[36] L. Bergé, Opt. Express 16, 21529–21543 (2008),
http://dx.doi.org/10.1364/OE.16.021529
[37] D. Kraemer, R. Hua, M.L. Cowan, K. Franjic, and R.J.D. Miller, Opt. Lett. 31, 981–983 (2006),
http://dx.doi.org/10.1364/OL.31.000981
[38] D. Kraemer, M.L. Cowan, R. Hua, K. Franjic, and R.J.D. Miller, J. Opt. Soc. Am. B 24, 813–818 (2007),
http://dx.doi.org/10.1364/JOSAB.24.000813
[39] A. Varanavičius, A. Dubietis, A. Beržanskis, R. Danielius, and A. Piskarskas, Opt. Lett. 22, 1603–1605 (1997),
http://dx.doi.org/10.1364/OL.22.001603
[40] M.P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, Opt. Lett. 30, 923–925 (2005),
http://dx.doi.org/10.1364/OL.30.000923
[41] F. Verluise, V. Laude, J.-P. Huignard, P. Tournois, and A. Migus, J. Opt. Soc. Am. B 17, 138–145 (2000),
http://dx.doi.org/10.1364/JOSAB.17.000138
[42] A. Trisorio and C.P. Hauri, Opt. Lett. 32, 1650–1652 (2007),
http://dx.doi.org/10.1364/OL.32.001650
[43] O. Varela, A. Zaïr, J. San Román, B. Alonso, I.J. Sola, C. Prieto, and L. Roso, Opt. Express 17, 3630–3639 (2009),
http://dx.doi.org/10.1364/OE.17.003630
[44] D.N. Fittinghoff, J.L. Bowie, J.N. Sweetser, R.T. Jennings, M.A. Krumbügel, K.W. DeLong, R. Trebino, and I.A. Walmsley, Opt. Lett. 21, 884–886 (1996),
http://dx.doi.org/10.1364/OL.21.000884
[45] J. Paye, IEEE J. Quantum Electron. 28, 2262–2273 (1992),
http://dx.doi.org/10.1109/3.159533