[PDF]   
    http://dx.doi.org/10.3952/lithjphys.50114
    
    Open access article / Atviros prieigos straipsnis
    
    Lith. J. Phys. 50, 7–15 (2010)
    
    
    MAGNETOOPTICS OF OPAL CRYSTALS
        MODIFIED BY COBALT NANOPARTICLES
      I. Šimkienėa, A. Rėzaa, A. Kindurysa,
      V. Bukauskasa, J. Babonasa, R. Szymczakb,
      P. Aleshkevychb, M. Franckevičiusc, and R.
      Vaišnorasc
      aSemiconductor Physics Institute, A. Goštauto 11,
        LT-01108 Vilnius, Lithuania
      E-mail: jgb@pfi.lt
      bInstitute of Physics of the Polish Academy of
        Sciences, Lotników 32/46, PL-02668 Warsaw, Poland
      cVilnius Pedagogical University, Studentų 39,
        LT-08106 Vilnius, Lithuania
    
    
    Received 15 July 2009; accepted 19
      March 2010
    
    
    Optical and magnetooptical
      properties of opal photonic crystals modified by Co nanoparticles
      have been investigated by modulation spectroscopy technique in the
      visible spectral range from 400 to 800 nm. The Co nanoparticles of
      1 to 8 nm in size were formed by means of chemical reduction
      reaction inside synthetic opal crystals composed of regularly
      close-packed SiO2 spheres of diameter 250–300 nm. As it
      was estimated from the spectral shift of the stop band of photonic
      crystals, Co nanoparticles occupied up to several percent of void
      volume in opal crystal lattice. In the Faraday configuration,
      external magnetic field induced the change in optical transmission
      normalized to sample thickness 1 cm and magnetic field 1 T equal
      to 0.10–0.35 for Co-modified opal crystals in the spectral range
      under consideration. The fabricated hybrid structures can be
      considered as a possible prototype of magnetophotonic crystals.
    
    Keywords: magnetophotonic crystals,
      modulation spectroscopy
    
    PACS: 42.70.Qs, 78.20.Ls
    
    
    OPALO KRISTALŲ SU Co
        NANODALELĖMIS MAGNETOOPTIKA
      I. Šimkienėa, A. Rėzaa, A. Kindurysa,
      V. Bukauskasa, J. Babonasa, R. Szymczakb,
      P. Aleshkevychb, M. Franckevičiusc, R.
      Vaišnorasc
      aPuslaidininkių fizikos institutas, Vilnius, Lietuva
      bLenkijos MA Fizikos institutas, Varšuva,
        Lenkija
      cVilniaus pedagoginis universitetas, Vilnius,
        Lietuva
      
    
    Taikant moduliacinės spektroskopijos metodiką,
      tirti opalo fotoninių kristalų su Co nanodalelėmis optiniai ir
      magnetooptiniai spektrai regimojo spektro srityje nuo 400 iki 800
      nm. Sintetiniuose opalo kristaluose, sudarytuose iš glaudžios
      sanklodos tvarka išsidėsčiusių 250–300 nm skersmens SiO2
      sferų, cheminės redukcijos reakcijose buvo suformuotos nuo 1 iki 8
      nm dydžio Co nanodalelės. Iš fotoninio kristalo užtvarinės juostos
      poslinkio spektre nustatyta, kad Co nanodalelės užpildo kelis
      procentus opalo kristalo gardelės ertmių. Faradėjaus
      konfigūracijos opalo kristaluose su Co nanodalelėmis išorinis
      magnetinis laukas tirtoje spektro srityje sukelia optinio
      pralaidumo pokytį. Esant 1 cm storio bandiniui ir 1 T magnetiniam
      laukui, jis lygus 0,10–0,35. Pagaminti hibridiniai dariniai gali
      būti nagrinėjami kaip magnetofotoninių kristalų prototipai.
    
    
      
      References / Nuorodos
    
    [1] S.G. Johnson and J.D. Joannopoulos, Photonic Crystals: The
      Road from Theory to Practice (Springer, 2002), 
    http://www.amazon.com/gp/reader/0792376099/
    [2] M. Inoue, H. Uchida, K. Nishimura, and P.B. Lim, Magnetophotonic
    crystals – a novel magneto-optic material with artificial periodic
    structures, J. Mater. Chem. 16, 678–684 (2006), 
    
      http://dx.doi.org/10.1039/b511434a
    [3] R. Fujikawa, A.V. Baryshev, A.B. Khanikaev, H. Uchida, P.B. Lim,
    and M. Inoue, Fabrication and optical properties of
    three-dimensional magnetophotonic heterostructures, IEEE Trans.
    Magn. 42, 3075–3077 (2006), 
    
      http://dx.doi.org/10.1109/TMAG.2006.879620
    [4] A.V. Baryshev, T. Kodama, K. Nishimura, H. Uchida, and M. Inoue,
    Three-dimensional magnetophotonic crystals based on artificial
    opals, J. Appl. Phys. 95, 7336–7338 (2004), 
    
      http://dx.doi.org/10.1063/1.1676036
    [5] R. Fujikawa, A.V. Baryshev, H. Uchida, P.B. Lim, and M. Inoue,
    Fabrication of three-dimensional magnetophotonic crystals: Opal thin
    films filled with Bi:YIG, J. Magn. 11, 147–150 (2006), 
    
      http://www.dbpia.co.kr/view/ar_view.asp?arid=760265
    [6] V.V. Pavlov, P.A. Usachev, R.V. Pisarev, D.A. Kurdyukov, S.F.
    Kaplan, A.V. Kimel, A. Kirilyuk, and Th. Rasing, Enhancement of
    optical and magnetooptical effects in three-dimensional opal/Fe3O4
    magnetic photonic crystals, Appl. Phys. Lett. 93, 072502
    (2008), 
    
      http://dx.doi.org/10.1063/1.2973150
    [7] V.V. Pavlov, P.A. Usachev, R.V. Pisarev, D.A. Kurdyukov, S.F.
    Kaplan, A.V. Kimel, A. Kirilyuk, and Th. Rasing, Optical study of
    three-dimensional magnetic photonic crystals opal/Fe3O4,
    J. Magn. Magn. Mater. 321, 840–842 (2009), 
    
      http://dx.doi.org/10.1016/j.jmmm.2008.11.065
    [8] T. Kodama, K. Nishimura, A.V. Baryshev, H. Uchida, and M. Inoue,
    Opal photonic crystals impregnated with magnetite, Phys. Status
    Solidi B 241, 1597–1600 (2004), 
    
      http://dx.doi.org/10.1002/pssb.200304630
    [9] C. Koerdt, G.L.J.A. Rikken, and E.P. Petrov, Faraday effect of
    photonic crystals, Appl. Phys. Lett. 82, 1538–1540 (2003), 
    
      http://dx.doi.org/10.1063/1.1558954
    [10] A. Rėza, I. Šimkienė, G.J. Babonas, R. Vaišnoras, D. Kurdyukov,
    and V. Golubev, Magnetic circular dichroism of opal crystals
    infiltrated with iron porphyrin, Lithuanian J. Phys. 48,
    319–323 (2008), 
    
      http://dx.doi.org/10.3952/lithjphys.48404
    [11] X. Xu, S.A. Majetich, and S.A. Asher, Mesoscopic monodisperse
    ferromagnetic colloids enable magnetically controlled photonic
    crystals, J. Am. Chem. Soc. 124, 13864–13868 (2002), 
    
      http://dx.doi.org/10.1021/ja026901k
    [12] A. Gupta, A.Yu. Ganin, P. Sharma, V. Agnihotri, L.M. Belova,
    K.V. Rao, M.E. Kozlov, A.A. Zakhidov, and R.H. Baughman, Synthetic
    magnetic opals, Pramana 58, 1051–1059 (2002), 
    
      http://dx.doi.org/10.1007/s12043-002-0216-z
    [13] H. Bönnemann and R.M. Richards, Nanoscopic metal particles –
    synthetic methods and potential applications, Eur. J. Inorg. Chem. 2001,
    2455–2480 (2001), 
    http://dx.doi.org/10.1002/1099-0682%28200109%292001:10%3C2455::AID-EJIC2455%3E3.0.CO;2-Z
    [14] H. Hofmeister, P.-T. Miclea, and W. Mörke, Metal nanoparticle
    coating of oxide nanospheres for core-shell structures, Part. Part.
    Syst. Char. 19, 359–365 (2002), 
    http://dx.doi.org/10.1002/1521-4117%28200211%2919:5%3C359::AID-PPSC359%3E3.0.CO;2-B
    [15] G.N. Glavee, K.J. Klabunde, C.M. Sorensen, and G.C.
    Hadjipanayis, Borohydride reduction of cobalt ions in water.
    Chemistry leading to nanoscale metal, boride or borate particles,
    Langmuir 9, 162–169 (1993), 
    
      http://dx.doi.org/10.1021/la00025a034
    [16] C. Petit and M.P. Pileni, Physical properties of self-assembled
    nanosized cobalt particles, Appl. Surf. Sci. 162–163,
    519–528 (2000), 
    
      http://dx.doi.org/10.1016/S0169-4332%2800%2900243-9
    [17] G. Babonas and G. Pukinskas, Issledovanie opticheskikh i
      magnitoopticheskikh svoistv poluprovodnikov metodom spektral’noi
      ellipsometrii (Studies of Optical and Magnetooptical
      Properties of Semiconductors by Modulation Spectroscopy Technique),
    preprint No 23 (Semiconductor Physics Institute, Vilnius, 1988) [in
    Russian]
    [18] J.F. Nye, Physical Properties of Crystals: Their
      Representation by Tensors and Matrices (Oxford University
    Press, 2000), 
    
      http://www.amazon.com/reader/0198511655
    [19] A. Reza, R. Tamasevicius, J. Babonas, Z. Balevičius, V.
    Vaicikauskas, V. Golubev, and D. Kurdyukov, Ellipsometric studies of
    opal crystals, Phys. Status Solidi C 5, 1391–1394 (2008), 
    
      http://dx.doi.org/10.1002/pssc.200777739
    [20] J. Sabataityte, I. Simkiene, G.-J. Babonas, A. Reza, M. Baran,
    R. Szymczak, R. Vaisnoras, L. Rasteniene, V. Golubev, and D.
    Kurdyukov, Physical studies of porphyrin-infiltrated opal crystals,
    Mater. Sci. Eng. C 27, 985–989 (2007), 
    
      http://dx.doi.org/10.1016/j.msec.2006.09.048
    [21] A. Rėza, R. Vaišnoras, C. Lopez, D. Golmayo, and J. Babonas,
    Optical anisotropy of synthetic opals, in: 38-oji Lietuvos
      nacionalinė fizikos konferencija, Programa ir pranešimu˛ tezės,
      Vilnius, 2009 m. birželio 8–10 d. (38th Lithuanian National
      Conference in Physics, Program and Abstracts, June 8–10, 2009)
    (Vilnius, 2009) p. 250
    [22] G.A. Babonas and A.A. Reza, Izmerenie piezogiratsionnykh
    konstant kubicheskikh kristallov (Measurements of piezogyration
    constants in cubic crystals), Kristallografiya [Sov. Phys.
    Crystallogr.] 27, 932–935 (1982) [in Russian]
    [23] V. Salgueirino-Maceira, M.A. Correa-Duarte, M. Spasova, L.M.
    Liz-Marzan, and M. Farle, Composite silica spheres with magnetic and
    luminescent functionalities, Adv. Funct. Mater. 16, 509–514
    (2006), 
    
      http://dx.doi.org/10.1002/adfm.200500565
    [24] Y.-W. Zhao, R.K. Zheng, X.X. Zhang, and J.Q. Xiao, A simple
    method to prepare uniform Co nanoparticles, IEEE Trans. Magn. 39,
    2764–2766 (2006), 
    
      http://dx.doi.org/10.1109/TMAG.2003.815592
    [25] C.M. Sorensen, Magnetism, in: Nanoscale Materials in
      Chemistry, ed. J.K. Klabunde (Wiley–Interscience, New York,
    2001) pp. 169–220, 
    
      http://www.amazon.com/gp/reader/0470222700/
    [26] I.S. Edelman, O.V. Vorotynova, V.A. Seredkin, V.N. Zabluda,
    R.D. Ivantsov, Yu.I. Gatiyatova, V.F. Valeev, R.I. Khaĩbullin, and
    A.L. Stepanov, Magnetic and magneto-optical properties of
    ion-synthesized cobalt nanoparticles in silicon oxide, Phys. Solid
    State 50, 2088–2094 (2008), 
    
      http://dx.doi.org/10.1134/S1063783408110140
    [27] M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge, W.A. Hines, and
    J.I. Budnick, Structure and magnetic properties of SiO2-coated
    Co nanoparticles, J. Appl. Phys. 92, 491–495 (2002), 
    
      http://dx.doi.org/10.1063/1.1483393
    [28] U. Kreibig and M. Vollmer, Optical Properties of Metal
      Clusters (Springer, Berlin, 1995), 
    
      http://www.amazon.com/gp/reader/3642081916/
    [29] T.K. Xia, P.M. Hui, and D. Stroud, Theory of Faraday rotation
    in granular magnetic materials, J. Appl. Phys. 67, 2736–2741
    (1990), 
    
      http://dx.doi.org/10.1063/1.345438
    [30] O. Yeshchenko, I. Dmitruk, A. Alexeenko, A. Dmitruk, and V.
    Tinkov, Optical properties of sol-gel fabricated Co/SiO2
    nanocomposites, Physica E 41, 60–65 (2008), 
    
      http://dx.doi.org/10.1016/j.physe.2008.06.003
    [31] V.A. Kosobukin, Optics of circularly polarized light waves in
    one-dimensional magneto-photonic crystals: Theory, Solid State
    Commun. 139, 92–96 (2006), 
    
      http://dx.doi.org/10.1016/j.ssc.2006.05.024
    [32] Landolt-Börnstein. Numerical Data and Functional
      Relationships in Science and Technology, vol. 15, subvolume b,
    “Optical properties of pure metals and binary alloys”
    (Springer-Verlag, Berlin, 1985)
    [33] M. Inoue, K. Arai, T. Fujii, and M. Abe, Magnetooptical
    properties of one-dimensional photonic crystals composed of magnetic
    and dielectric layers, J. Appl. Phys. 83, 6768–6770 (1998),
    
    
      http://dx.doi.org/10.1063/1.367789
    [34] A.V. Baryshev, T. Kodama, K. Nishimura, H. Uchida, and M.
    Inoue, Magneto-optical properties of three-dimensional
    magnetophotonic crystals, IEEE Trans. Magn. 40, 2829–2831
    (2004), 
    
      http://dx.doi.org/10.1109/TMAG.2004.832282