[PDF]    http://dx.doi.org/10.3952/lithjphys.51201

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 147–154 (2011)

DIELECTRIC STUDIES ON BINARY MIXTURES OF FORMAMIDE WITH ETHANOLAMINE USING THE TIME DOMAIN TECHNIQUE
P.B. Undre a, P.W. Khirade a, S.B. Jagdale b, S.N. Helambe b, and S.C. Mehrotra c
a Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad–431 004, India
E-mail: prabhakarundre@yahoo.co.in
b Microwave Research Laboratory, Deogiri College, Aurangabad, India
c Department of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University,
Aurangabad–431 004, India

Received 29 January 2011; revised 3 March 2011; accepted 17 March 2011

Dielectric relaxation measurements on formamide (FA) – ethanolamine (ETA) solvent mixtures have been carried out across the entire concentration range using time domain reflectometry technique at 15, 25, 35, and 45 {\circ}C over the frequency range from 10 MHz to 10 GHz. The mixtures exhibit a principle dispersion of the Davidson–Cole relaxation type at microwave frequencies. Bilinear calibration method is used to obtain complex permittivity ε\varepsilon*(ω\omega) from complex reflection coefficient ρ\rho*(ω\omega) over the frequency range 10 MHz to 10 GHz. The excess permittivity εE, excess inverse relaxation time (1/τ\tau)E, Kirkwood correlation factor geff , and thermodynamic parameters such as Gibbs energy of activation Δ\DeltaG and molar enthalpy of activation Δ\DeltaH are also calculated to study the solute–solvent interaction.
Keywords: activation energy, excess parameters, Kirkwood correlation factor, time domain reflectometry
PACS: 77.22.Ch, 77.22.Gm, 77.84.Nh


DVINARIŲ FORMAMIDO IR ETANOLAMINO MIŠINIŲ DIELEKTRINIS TYRIMAS LAIKINĖS REFLEKTOMETRIJOS METODU
P.B. Undre a, P.W. Khirade a, S.B. Jagdale b, S.N. Helambe b, S.C. Mehrotra c
a Dr. Babasaheb Ambedkar Marathwada universiteto Fizikos katedra, Aurangabadas, Indija
b Mikrobangų tyrimo laboratorija, Deogiri koledžas, Aurangabadas, Indija
c Dr. Babasaheb Ambedkar Marathwada universiteto Kompiuterijos ir informacinių technologijų katedra, Aurangabadas, Indija

Laikinės reflektometrijos metodu matuota formamido (FA) ir etanolamino (ETA) tirpalų mišinių dielektrinė relaksacija visame koncentracijų diapazone esant 15, 25, 35 ir 45 C temperatūrai ir dažniui nuo 10 MHz iki 10 GHz. Mikrobangų dažnių diapazone pagrindin mišinių dispersija yra Davidson–Cole relaksacijos tipo. Kompleksinei skvarbai ε\varepsilon*(ω\omega) iš kompleksinio atspindžio gauti dažnių nuo 10 MHz iki 10 GHz diapazone taikomas dvitiesinio kalibravimo metodas. Tirpintos medžiagos ir tirpiklio sąveikai tirti taip pat skaičiuoti perteklinė skvarba (εE), perteklinė atvirkštinė relaksacijos trukmė (1/τ\tau)E, Kirkwoodo koreliacijos faktorius (geff) ir termodinaminiai parametrai, tokie kaip Gibso aktyvacijos energija (Δ\DeltaG) bei molinė aktyvacijos entalpija (Δ\DeltaH).

References / Nuorodos


[1] A. Choudhari, H. Choudhari, and S.C. Mehrotra, J. Chin. Chem. Soc. 49, 489 (2002),
http://proj3.sinica.edu.tw/~chem/servxx6/files/paper_11339_1269419395.pdf
[2] K. Dharmalingam, K. Ramachandran, P. Sivagurunathan, P. Undre, P.W. Khirade, and S.C. Mehrotra, Bull. Kor. Chem. Soc. 27(12), 2040 (2006),
http://dx.doi.org/10.5012/bkcs.2006.27.12.2040
[3] K. Dharmalingam, K. Ramachandran, P. Sivagurunathan, P. Undre, P.W. Khirade, and S.C. Mehrotra, Mol. Phys. 104(18), 2835 (2006),
http://dx.doi.org/10.1080/00268970600842737
[4] K. Dharmalingam, K. Ramachandran, P. Sivagurunathan,P. Undre, P.W. Khirade, and S.C. Mehrotra, Chem. Papers Chem. Zvesti 61(4), 300 (2007),
http://dx.doi.org/10.2478/s11696-007-0037-0
[5] K. Dharmalingam, K. Ramachandran, P. Sivagurunathan, P. Undre, P.W. Khirade, and S.C. Mehrotra, J. Appl. Poly. Sci. 107, 2312 (2008),
http://dx.doi.org/10.1002/app.27384
[6] A.C. Kumbharkhane, S.M. Puranik, and S.C. Mehrotra, J. Sol. Chem. 22, 219 (1993),
http://dx.doi.org/10.1007/BF00649245
[7] J. Lou, T.A. Hatton, and P.E. Laibinis, J. Phys. Chem. A 101, 5262 (1997),
http://dx.doi.org/10.1021/jp970731u
[8] Prabhakar Undre, S.N. Helambe, S.B. Jagdale, P.W. Khirade, and S.C. Mehrotra, Pramana J. Phys. 68(5), 851 (2007),
http://dx.doi.org/10.1007/s12043-007-0083-8
[9] Prabhakar Undre, S.N. Helambe, S.B. Jagdale, P.W. Khirade, and S.C. Mehrotra, J. Mol. Liq. 137, 147 (2008),
http://dx.doi.org/10.1016/j.molliq.2007.06.004
[10] V.P. Pawar and S.C. Mehrotra, J. Mol. Liq. 95, 63 (2002),
http://dx.doi.org/10.1016/S0167-7322(01)00282-3
[11] P. Sivagurunathan, K. Dharmalingam, K. Ramachandran, P. Undre, P.W. Khirade, and S.C. Mehrotra, Main Group Chem. 4(3), 235 (2005),
http://dx.doi.org/10.1080/10241220600628640
[12] P. Sivagurunathan, K. Dharmalingam, K. Ramachandran, P. Undre, P.W. Khirade, and S.C. Mehrotra, Physica B 387, 203 (2007),
http://dx.doi.org/10.1016/j.physb.2006.04.005
[13] U. Sankar, G. Parthipan, P. Undre, P.W. Khirade, T. Thenappan, and S.C. Mehrotra, Main Group Chem. 8(2), 61 (2009),
http://dx.doi.org/10.1080/10241220902977596
[14] K. Ramachandran, K. Dharmalingam, P. Sivagurunathan, Prabhakar Undre, P.W. Khirade, and S.C. Mehrotra, Main Group Chem. 4(4), 303 (2005),
http://dx.doi.org/10.1080/10241220600748505
[15] R.J. Sengwa , Vinita Khatri, and Sonu Sankhla, J. Sol. Chem. 38, 763 (2009),
http://dx.doi.org/10.1007/s10953-009-9408-1
[16] R.J. Sengwa, Sonu Sankhla, and Vinita Khatri, J. Mol. Liq. 151, 17 (2010),
http://dx.doi.org/10.1016/j.molliq.2009.10.011
[17] R.J. Sengwa, Vinita Khatri, Sonu Sankhla, J. Mol. Liq. 144, 89 (2009),
http://dx.doi.org/10.1016/j.molliq.2008.10.009
[18] Jianfeng Lou, A.K. Paravastu, P.E. Laibinis, and T.A. Hatton, J. Phys. Chem. A 101, 9892 (1997),
http://dx.doi.org/10.1021/jp972785+
[19] S. Mashimo, S. Kuwabara, S. Yogihara, and K. Higasi, J. Chem. Phys. 90, 3292 (1989),
http://dx.doi.org/10.1063/1.455883
[20] R.H. Cole, J.G. Berbarian, S. Mashimo, G. Chryssikos, A. Burns, and E. Tombari, J. Appl. Phys. 66, 793 (1989),
http://dx.doi.org/10.1063/1.343499
[21] S.M. Puranik, A.C. Kumbharkhane, and S.C. Mehrotra, J. Microw. Power Electromagn. Energy 26, 196 (1991),
http://www.jmpee.org/JMPEE_temp/26-4_bl/JMPEEA-26-4-Pg196.htm
[22] S. Havriliak and S. Negami, J. Polymer Sci. Part C 14, 99 (1966),
http://dx.doi.org/10.1002/polc.5070140111
[23] D.W. Davidson and R.H. Cole, J. Chem. Phys. 18, 1484 (1950),
http://dx.doi.org/10.1063/1.1747518
[24] K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 341 (1941),
http://dx.doi.org/10.1063/1.1750906
[25] P. Debye, Polar Molecules (The Chemical Catalogue Company, New York, 1929) ,
[26] S.M. Puranik, A.C. Kumbharkhane, and S.C. Mehrotra, Indian J. Chem. A 32, 613 (1993)
[27] J. Barthel, R. Buchner, and Wurm Bernhard, J. Mol. Liq. 98–99, 51–69 (2002),
http://dx.doi.org/10.1016/S0167-7322(01)00309-9
[28] M. Tabellout, P. Lanceleur, and J.R. Emery, J. Chem. Soc. Faraday Trans. 86, 1493 (1990),
http://dx.doi.org/10.1039/ft9908601493
[29] S. Ahire, A. Chaudhari, M. Lokhande, and S.C. Mehrotra, J. Solution Chem. 27, 993 (1998),
http://dx.doi.org/10.1023/A:1022648204099
[30] P.W. Khirade, A. Chaudhari, J.B. Shinde, S.N. Helambe, and S.C. Mehrotra, J. Solution Chem. 28, 1037 (1999),
http://dx.doi.org/10.1023/A:1022666128166
[31] S.N. Helambe, M.P. Lokhande, A.C. Kumbharkhane, S.C. Mehrotra, and S. Doraiswamy, Pramana–J. Phys. 44(5), 405 (1995),
http://dx.doi.org/10.1007/BF02848492
[32] H. Fröhlich, Theory of Dielectrics (Oxford University Press, London, 1949)
[33] G. Moumouzias, D.K. Panopoulos, and G. Ritzoulis, J. Chem. Eng. Data 36, 20 (1991),
http://dx.doi.org/10.1021/je00001a006
[34] N.E. Hill, W.E. Vaughan, A.H. Price, and M. Davies, Dielectric Properties and Molecular Behaviour (Reinhold, London, 1969)
[35] S. Glasstone, K.J. Laidler, and H. Eyring, Theory of Rate Processes (McGraw–Hill Book Co., New York, 1941) 548 p.