[PDF]     http://dx.doi.org/10.3952/lithjphys.51415

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 370–376 (2011)


TIME-RESOLVED FLUORESCENCE SPECTROSCOPY OF THE HEART TISSUES
J. Venius a, S. Bagdonas b, E. Žurauskas c, and R. Rotomskis a,b
a Biomedical Physics Laboratory of Institute of Oncology, Vilnius University, Baublio 3B, LT-08406 Vilnius, Lithuania
E-mail: jonas.venius@vuoi.lt
b Biophotonics Group of Laser Research Centre, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
c Medical Faculty of Vilnius University, Čiurlionio 21, LT-03100 Vilnius, Lithuania

Received 20 October 2011; revised 13 December 2011; accepted 13 December 2011

During the heart surgery there is a possibility to harm the conduction system of the heart (HCS), which may cause dangerous obstruction of the heart functionality. The muscular origin makes it complicated to distinguish HCS from the surrounding tissues; therefore, there is an immense necessity to visualise HCS during the operation time. Optical methods carry information about intrinsic properties of the tissue and provide the unique possibility to study the objects non-invasively. The experiments were performed on the human heart tissue specimens ex vivo. HCS, myocardium (MC), and connective tissue (CT) were preliminary marked by a pathologist and histologically approved after the spectral measurements. The spectrometer FLS920 (Edinburgh Instruments) was used for steady state and time-resolved fluorescence registration. Fluorescence was exited using a 405 nm pulsed laser. Spectral analysis revealed that at least three fluorophores are responsible for the emission in the region of 430–550 nm. According to the lifetimes, the fluorescing constituents in all tissues should be the same. The fractional components of fluorescence intensity revealed a similar composition of MC and HCS; however, quantitative differences were observed between HCS and CT.
Keywords: heart, myocardium, time-resolved fluorescence
PACS: 87.19.Hh, 87.64.kv, 87.85.Pq


ŠIRDIES AUDINIŲ TYRIMAI FLUORESCENCINE LAIKINĖS SKYROS SPEKTROSKOPIJA
J. Venius a, S. Bagdonas b, E. Žurauskas c, and R. Rotomskis a,b
a Vilniaus universiteto Onkologijos instituto Biomedicininės fizikos laboratorija, Vilnius, Lietuva
b Vilniaus universiteto Tyrimų centro biofotonikos grupė, Vilnius, Lietuva
c Vilniaus universiteto Medicinos fakultetas, Vilnius, Lietuva

Širdies operacijų metu yra galimybė pažeisti širdies laidžiąją sistemą (ŠLS) ir sukelti nepataisomus širdies veiklos sutrikimus. Dėl raumeninės ŠLS kilmės ją sunku vizualiai atskirti nuo aplinkinių širdies audinių, todėl reikalingas metodas, padėsiantis atskirti ŠLS operacijų metu. Optiniai metodai yra neinvaziniai tyrimo būdai, kurių metu registruojami audinio optiniai parametrai, atspindintys kiekybinę bei kokybinę audinių sudėtį. Eksperimentams naudoti žmogaus širdies audinio preparatai ex vivo. ŠLS, jungiamojo audinio (JA) ir miokardo (MK) lokalizacija preparate buvo preliminariai pažymėta gydytojo patologo. Po spektroskopinių tyrimų šios vietos buvo identifikuojamos histologiškai. Spektroskopiniai tyrimai atlikti spektrofotometru FLS920 (Edinburgh Instruments). Fluorescencija žadinta impulsiniu lazeriu, kurio spinduliuotės bangos ilgis 405 nm. Iš spektroskopinių tyrimų nustatyta, kad mažiausiai trys fluoroforai yra atsakingi už širdies audinių fluorescenciją 430–550 nm srityje. Užregistruotos gyvavimo trukmės visų audinių yra panašios, todėl fluoroforai taip pat turėtų būti tie patys. Įvertinus fluoroforų įnašus į registruojamą fluorescencijos spektrą nustatyta, kad raumeninės kilmės audinių ŠLS ir MK sudėtis yra panaši, o tarp ŠLS ir JA stebėti kiekybiniai skirtumai.


References / Nuorodos

[1] F. Leblond, S.C. Davis, P.A. Valdés, and B.W. Pogue, Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications, J. Photochem. Photobiol. B 98(1), 77–94 (2010),
http://dx.doi.org/10.1016/j.jphotobiol.2009.11.007
[2] N. Ramanujam, Fluorescence spectroscopy of neoplastic and non-neoplastic tissues, Neoplasia 2(1–2), 89–117 (2000),
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1531869/?report=abstract
[3] T. Glanzmann, J.P. Ballini, H. van den Bergh, and G. Wagnières, Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy, Rev. Sci. Instrum. 70(10), 4067–4077 (1999),
http://dx.doi.org/10.1063/1.1150038
[4] G.A. Wagnieres, W.M. Star, and B.C. Wilson, In vivo fluorescence spectroscopy and imaging for oncological applications, Photochem. Photobiol. 68(5), 603–632 (1998),
http://dx.doi.org/10.1111/j.1751-1097.1998.tb02521.x
[5] M.-A. Mycek and B.W. Pogue (eds.), Handbook of Biomedical Fluorescence (Marcel Dekker, New York, 2003),
http://www.crcpress.com/product/isbn/9780824709556
[6] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic / Plenum, New York, 1999),
http://www.worldcat.org/title/principles-of-fluorescence-spectroscopy/oclc/246595757
[7] R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, Time-resolved fluorescence imaging in biology and medicine, J. Phys. D 35(9), R61–R76 (2002),
http://dx.doi.org/10.1088/0022-3727/35/9/201
[8] L. Marcu, Fluorescence lifetime in cardiovascular diagnostics, J. Biomed. Opt. 15(1), 011106 (2010),
http://dx.doi.org/10.1117/1.3327279
[9] P.R. Moreno and J.E. Muller, Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods, Curr. Opin. Cardiol. 17(6), 638–647 (2002),
http://journals.lww.com/co-cardiology/Citation/2002/11000/Identification_of_high_risk_atherosclerotic.10.aspx
[10] Y. Honda and P.J. Fitzgerald, Frontiers in intravascular imaging technologies, Circulation 117(15), 2024–2037 (2008),
http://pt.wkhealth.com/pt/re/circ/fulltext.00003017-200804150-00016.htm
[11] R. Richards-Kortum and E. Sevick-Muraca, Quantitative optical spectroscopy for tissue diagnosis, Annu. Rev. Phys. Chem. 47, 555–606 (1996),
http://dx.doi.org/10.1146/annurev.physchem.47.1.555
[12] T.G. Papazoglou, W.Q. Liu, A. Katsamouris, and C. Fotakis, Laser-induced fluorescence detection of cardiovascular atherosclerotic deposits via their natural emission and hypocrellin (HA) probing, J. Photochem. Photobiol. B 22(2), 139–144 (1994),
http://dx.doi.org/10.1016/1011-1344(93)06960-B
[13] J.J. Baraga, R.P. Rava, P. Taroni, C. Kittrell, M. Fitzmaurice, and M.S. Feld, Laser induced fluorescence spectroscopy of normal and atherosclerotic human aorta using 306–310 nm excitation, Lasers Surg. Med. 10(3), 245–261 (1990),
http://dx.doi.org/10.1002/lsm.1900100305
[14] A.L. Bartorelli, M.B. Leon, Y. Almagor, L.G. Prevosti, J.A. Swain, C.L. McIntosh, R.F. Neville, M.D. House, and R.F. Bonner, In vivo human atherosclerotic plaque recognition by laser-excited fluorescence spectroscopy, J. Am. Coll. Cardiol. 17(6), B160–B168 (1991),
http://dx.doi.org/10.1016/0735-1097(91)90953-7
[15] M. Perk, G.J. Flynn, S. Gulamhusein, Y. Wen, C. Smith, B. Bathgate, J. Tulip, N.A. Parfrey, and A. Lucas, Laser induced fluorescence identification of sinoatrial and atrioventricular nodal conduction tissue, Pacing Clin. Electrophysiol. 16, 1701–1712 (1993),
http://dx.doi.org/10.1111/j.1540-8159.1993.tb01041.x
[16] G.E. Kochiadakis, S.I. Chrysostomakis, M.D. Kalebubas, G.M. Filippidis, I.G. Zacharakis, and T.G. Papazoglou, The role of laser-induced fluorescence in myocardial tissue characterization, Chest 120, 233–239 (2001),
http://dx.doi.org/10.1378/chest.120.1.233
[17] G. Filippidis, G. Zacharakis, G.E. Kochiadakis, S.I. Chrysostomakis, P.E. Vardas, C. Fotakis, and T.G. Papazoglou, Ex vivo laser-induced fluorescence measurements of lamb and human heart tissue, Laser Phys. 13(5), 769–772 (2003),
http://www.maik.ru/cgi-perl/search.pl?type=abstract&name=lasphys&number=5&year=3&page=769
[18] S. Bagdonas, E. Žurauskas, G. Streckytė, and R. Rotomskis, Spectroscopic studies of the human heart conduction system ex vivo: Implication for optical visualization, J. Photochem. Photobiol. B 92(2), 128–134 (2008),
http://dx.doi.org/10.1016/j.jphotobiol.2008.05.010
[19] J. Venius, S. Bagdonas, E. Žurauskas, and R. Rotomskis, Visualization of human heart conduction system by means of fluorescence spectroscopy, J. Biomed. Opt. 16, 107001 (2011),
http://dx.doi.org/10.1117/1.3631786
[20] A.M.K. Nilsson, D. Heinrich, J. Olajos, and S. Andersson-Engels, Near infrared diffuse reflection and laser-induced fluorescence spectroscopy for myocardial tissue characterisation, Spectrochim. Acta A 53, 1901–1912 (1997),
http://dx.doi.org/10.1016/S1386-1425(97)00106-6
[21] L. Marcu, W.S. Grundfest, and M.C. Fishbein, Time-resolved laser-induced fluorescence spectroscopy for staging atherosclerotic lesions, in: Handbook of Biomedical Fluorescence, eds. M.-A. Mycek and B.W. Pogue (Marcel Dekker Inc., New York, Basel, 2003) pp. 397–430,
http://www.crcpress.com/product/isbn/9780824709556
[22] J. Venius, D. Labeikytė, E. Žurauskas, V. Strazdaitė, S. Bagdonas, and R. Rotomskis, Investigation of human heart tissue extracts by spectroscopic methods, Biologija 3, 53–58 (2006),
http://www.lmaleidykla.lt/ojs/index.php/biologija/article/view/668
[23] S.M. Weis, J.L. Emery, K.D. Becker, D.J. McBride Jr., J.H. Omens, and A.D. McCulloch, Myocardial mechanics and collagen structure in the osteogenesis imperfecta murine (oim), Circulation Res. 87, 663–669 (2000),
http://pt.wkhealth.com/pt/re/circres/abstract.00003012-200010130-00008.htm
[24] G.M. Fomovsky, S. Thomopoulos, and J.W. Holmes, Contribution of extracellular matrix to the mechanical properties of the heart, J. Mol. Cell. Cardiol. 48(3), 490–496 (2010),
http://dx.doi.org/10.1016/j.yjmcc.2009.08.003
[25] W.G. Cole, D. Chan, A.J. Hickey, and D.E. Wilcken, Collagen composition of normal and myxomatous human mitral heart valves, Biochem. J. 219(2), 451–460 (1984),
http://www.biochemj.org/bj/219/bj2190451.htm