[PDF]     http://dx.doi.org/10.3952/lithjphys.52102

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 3943 (2012)


MICROSTRUCTURES IN FERROELECTRIC LITHIUM NIOBATE SINGLE CRYSTALS
N.V. Sidorova, M.N. Palatnikova, A.A. Janicheva, P.G. Chufyreva, and K. Bormanisb
aInstitute of Chemistry, Kola Science Centre RAS, Fersman 14, Apatity, 184209 Murmansk Region, Russia
bInstitute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
E-mail: bormanis@cfi.lu.lv

Received 12 October 2011; accepted 1 March 2012

The local fluctuating micro- and nano-structures having the properties different from the rest of the single crystal bulk are found to appear around the laser beam trace in a crystal just after irradiation in the visible range. As the time or intensity of irradiation increases, the number of such micro-structures transforming into static micro- and macro-formations grows and they merge into a continuous track along the laser beam. The photo-refraction in stoichiometric single crystals is shown to be strong enough for the recording and storage of information.
Keywords: lithium niobate, single crystals, photo-refraction, laser radiation, periodic structure
PACS: 77.80.-e, 77.84.Ek, 78.20.Jq, 61.50.Nw


MIKRODARINIAI FEROELEKTRINIUOSE LIČIO NIOBATO MONOKRISTALUOSE
N.V. Sidorova, M.N. Palatnikova, A.A. Janicheva, P.G. Chufyreva, K. Bormanisb
aRusijos MA Kolos mokslinio centro Chemijos institutas, Apatitai, Rusija
bLatvijos universiteto Kietojo kūno fizikos institutas, Ryga, Latvija

Nustatyta, kad aplink lazerio pluošto taką kristale iškart po jo apšvitos regimojo ruožo spinduliuote susidaro lokalūs fliuktuojantys mikro- ir nanodariniai, savo savybėmis besiskiriantys nuo monokristalinės aplinkos. Didėjant apšvitos trukmei ar intensyvumui, šių mikrodarinių, virstančių statinėmis mikro- ir makroformacijomis, kiekis didėja ir jie susilieja į ištisinį pėdsaką išilgai lazerio pluošto. Parodyta, kad stechiometriniuose monokristaluose yra pakankamai didelė fotorefrakcija, tinkama informacijos įrašymui ir kaupimui.


References / Nuorodos

[1] M.N. Palatnikov, Materials of Electronic Techniques based on Ferroelectric Niobate-tantalate Solid Solution Single Crystals and Ceramics of Alkali Metals with Micro- and Nanostructures, Doct. thesis (IHTREMS KSC RAS, Apatity, 2011) [in Russian]
[2] N.V. Sidorov, A.A. Janichev, P.G. Chufyrev, B.N. Mavrin, M.N. Palatnikov, and V.T. Kalinnikov, Micro- and nanostructures in photorefractive lithium niobate single crystals induced by laser radiation, Doklady Akademii Nauk 428(4), 492–495 (2009) [in Russian]
[3] N.V. Sidorov, A.V. Syuy, M.N. Palatnikov, and V.T. Kalinnikov, Speckle-layer structure in photorefractive lithium niobate single crystals, Doklady Akademii Nauk 437(3), 352–355 (2011) [in Russian]
[4] M.N. Palatnikov, O.B. Shcherbina, I.V. Biryukova, N.V. Sidorov, and V.T. Kalinnikov, Study of LiNbO3:Gd crystal structure depending on grown conditions, Bulletin of KSC RAS 3, 40–46 (2010) [in Russian],
http://www.kolasc.net.ru/russian/news/vestnik/vestnik-3-2010.pdf
[5] M.N. Palatnikov, O.B. Shcherbina, N.V. Sidorov, and K. Bormanis, Micro- and nanostructures in lithium niobate single crystals doped with lanthanides, Crystallography Reports 55(5), 811–814 (2010),
http://dx.doi.org/10.1134/S1063774510050160
[6] M.N. Palatnikov, O.B. Shcherbina, V.V. Efremov, N.V. Sidorov, and V.T. Kalinnikov, Periodic micro- and nanostructures in single crystals LiNbO3:Gd grown at nonstationary conditions, Proc. RAS, Inorganic Materials 46(4), 479–484 (2010) [in Russian]
[7] Yu.S. Kuz’minov, Lithium Niobate – Electrooptical and Nonlinear Optical Crystal (Science, Moscow, 1987) [in Russian]
[8] N.V. Sidorov, T.R. Volk, B.N. Mavrin, and V.T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons (Science, Moscow, 2003) [in Russian]
[9] T. Volk and M. Wohlecke, Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2009),
http://www.springer.com/materials/optical+%26+electronic+materials/book/978-3-540-70765-3
[10] B.I. Sturman and V.M. Fridkin, Photogalvanic Effect and Related Phenomena in Substances without a Centre of Symmetry (Science, Moscow, 1992) [in Russian]
[11] M. Goulkov, M. Imlau, and Th. Woike, Photorefractive parameters of lithium niobate crystals from photoinduced light scattering, Phys. Rev. B 77, 235110–235115 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.235110
[12] V.M. Voskresenskii, O.R. Starodub, N.V. Sidorov, M.N. Palatnikov, and B.N. Mavrin, Modeling of clusters, Crystallography Reports 56(2), 221–226 (2011),
http://dx.doi.org/10.1134/S1063774511010251
[13] N.V. Sidorov, A.V. Syuy, M.N. Palatnikov, D.V. Evstratova, and B.N. Mavrin, N.V. Sidorov, A.V. Syuy, M.N. Palatnikov, D.V. Evstratova, and B.N. Mavrin, Photorefractive and Raman scattering, Opt. Spectrosc. 110(6), 864–870 (2011),
http://dx.doi.org/10.1134/S0030400X11690026
[14] E.Yu. Vorontsova, R.M. Grechishkin, I.A. Kaplunov, F.I. Kolesnikov, V.Ya. Molchanov, I.V. Talyzin, and S.A. Tretyakov, Manifestation of gyrotropy upon light scattering in paratellurite, Opt. Spectrosc. 104(6), 886–889 (2008),
http://dx.doi.org/10.1134/S0030400X08060143
[15] N.V. Sidorov, P.G. Chufyrev, M.N. Palatnikov, and V.T. Kalinnikov, Raman spectra and photorefraction of pure and alloyed crystals LiNbO3, Proc. RAS, Inorganic Materials 41(2), 210–218 (2005) [in Russian]
[16] N.V. Sidorov, P.G. Chufyrev, M.N. Palatnikov, and V.T. Kalinnikov, Defects, photorefraction and vibrational spectrum of lithium niobate crystals with different composition, Nano Microsyst. Technique 3, 12–17 (2006) [in Russian],
http://www.microsystems.ru/eng/info.php?title=2&tab=nmst_publ&field=text_eng&id=974