[PDF]     http://dx.doi.org/10.3952/lithjphys.52109

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 5962 (2012)


MULTI-SPECTRAL OPTOELECTRONIC DEVICE FOR SKIN MICROCIRCULATION ANALYSIS
L. Asare, E. Kviesis-Kipge, M. Ozols, J. Spigulis, and R. Erts
Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina 19, LV-1586 Riga, Latvia
E-mail: lasma.asare@yahoo.com

Received 5 September 2011; revised 17 February 2012; accepted 1 March 2012

The developed optical fiber laser diode biosensor comprises one multi-wavelength laser diode (405, 660 and 780 nm) and a single photodiode with multi-channel signal output processing and a built-in Li-ion accumulator. Special software was created for visualisation and measuring of multi-spectral photoplethysmography signals. The prototype device was tested on 11 healthy subjects.
Keywords: photoplethysmography, biosensor, multi-wavelength
PACS: 42.62.Be, 47.63.Jd, 85.60.Jb, 87.19.U-


ODOS MIKROAPYTAKOS ANALIZĖS DAUGIASPEKTRIS OPTOELEKTRONINIS PRIETAISAS
L. Asare, E. Kviesis-Kipge, M. Ozols, J. Spigulis, R. Erts
Latvijos universiteto Atominės fizikos ir spektroskopijos institutas, Ryga, Latvija

Sukurtas optinio šviesolaidžio lazerinis diodinis biojutiklis, sudarytas iš vieno daugiabangio lazerinio diodo (405, 660 ir 780 nm) ir atskiro šviesos diodo su daugiakanaliu išėjimo signalo apdorojimu ir įmontuotu Li jonų akumuliatoriumi. Sukurta speciali programinė įranga daugiaspektrės fotopletizmografijos signalams vaizdinti ir matuoti. Prietaiso prototipas išbandytas su 11 sveikų asmenų.


References / Nuorodos

[1] J. Allen, Photoplethysmography and its application in clinical physiological measurement, Physiol. Meas. 28, R1–R39 (2007),
http://dx.doi.org/10.1088/0967-3334/28/3/R01
[2] H. Ugnell and P.A. Öberg, Time variable photoplethysmographic signal: its dependence on light wavelength and sample volume, Proc. SPIE 2331, 89–97 (1995),
http://dx.doi.org/10.1117/12.201233
[3] H.H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R.C. Hutchinson, Mobile monitoring with wearable photoplethysmographic biosensors, IEEE Eng. Med. Biol. Mag. 22, 28–40 (2003),
http://dx.doi.org/10.1109/MEMB.2003.1213624
[4] http://www.ilo.org/safework_bookshelf/english?content&nd=857170571
[5] L. Gailite, J. Spigulis, and A. Lihachev, Multilaser photoplethysmography technique, Lasers Med. Sci. 23, 189–193 (2008),
http://dx.doi.org/10.1007/s10103-007-0471-9
[6] R. Stojanovic and D. Karadaglic, A LED–LED-based photoplethysmography sensor, Physiol. Meas. 28, N19–N27 (2007),
http://dx.doi.org/10.1088/0967-3334/28/6/N01
[7] E. Kviesis-Kipge, A new technique for optical detection of biosignals, Latv. J. Phys. Tech. Sci. 46(3), 64–69 (2009)
[8] L. Asare, E. Kviesis-Kipge, U. Rubins, O. Rubenis, and J. Spigulis, Multi-spectral photoplethysmography technique for parallel monitoring of pulse shapes at different tissue depths, Proc. SPIE 8087, 80872E (2011),
http://dx.doi.org/10.1117/12.889954