[PDF]     http://dx.doi.org/10.3952/lithjphys.52110

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 1018 (2012)


RECORDING OF HOLOGRAPHIC GRATINGS AND THEIR COHERENT SELF-ENHANCEMENT IN AN a-As2S3 FILM WITH A MINIMUM LIGHT INTENSITY MODULATION
A. Ozols, P. Augustovs, and D. Saharov
Faculty of Material Science and Applied Chemistry, Riga Technical University, Azenes 14/24, LV-1007 Riga, Latvia
E-mail: aozols@latnet.lv

Received 28 August 2011; revised 12 February 2012; accepted 12 March 2012

The holographic grating recording efficiency and the coherent self-enhancement efficiency of gratings are experimentally studied depending on the recording light interference fringe visibility in an a-As2S3 chalcogenide film in order to find the minimum visibility. The minimum fringe visibility Mmin = 3.6×10–4 is found, which is determined by the scattered light background. In this case the maximal diffraction efficiency ηmax = 0.05% and the maximal self-enhancement factor ξmax = 5.0, compared to ηmax = 15% and ξmax = 12.3 in the optimal M = 1.0000 case. In the case of two-beam holographic grating recording the maximal diffraction efficiency increases when M is increased, whereas sensitivity decreases. A simple model, based on linear recording with the spatial light intensity distribution governed by M and including intensity-dependent material photosensitivity and grating relaxation, is proposed to explain these results. In the case of coherent self-enhancement both the maximal diffraction efficiency and sensitivity increase with fringe visibility M. This can be explained by the fact that mechanical stress modulation during the initial grating recording depending on M is followed by relaxational structural changes reinforcing the coherent self-enhancement effect. The developed approach may explain the absence of this effect in some azobenzene oligomer films.
Keywords: amorphous chalcogenide films, holographic gratings, hologram self-enhancement, interference fringe visibility
PACS: 42.40.Ht, 78.47.jj, 78.55.Qr


HOLOGRAFINIŲ GARDELIŲ ĮRAŠYMAS IR JŲ KOHERENTINIS SUSISTIPRINIMAS a-As2S3 PLONAJAME SLUOKSNYJE MINIMALIOS ŠVIESOS INTENSYVUMO MODULIACIJOS SĄLYGOMIS
A. Ozols, P. Augustovs, D. Saharov
Rygos technikos universitetas, Ryga, Latvija

Siekiant nustatyti minimalų kontrastą eksperimentiškai tirta, kaip holografinių gardelių įrašymo ir jų koherentinio susistiprinimo efektyvumas a-As2S3 chalkogenido sluoksnyje priklauso nuo įrašančios šviesos interferencinių juostelių kontrasto. Gautas minimalus juostelių kontrastas Mmin = 3,6×10–4, kurį lemia išsklaidytos šviesos fonas. Šiuo atveju maksimalus difrakcijos efektyvumas ηmax = 0,05 %, o maksimalus susistiprinimo koeficientas ξmax =5,0, lyginant su ηmax =15 % ir ξmax = 12,3 optimaliu M = 1,0000. Dvipluoščio holografinių gardelių įrašymo metu maksimalus difrakcijos efektyvumas didėja didinant M, o jautris tada mažėja. Šiems rezultatams paaiškinti pasiūlytas paprastas modelis, pagįstas tiesiniu įrašymu, kai erdvinį šviesos intensyvumo pasiskirstymą lemia M, ir įskaitantis nuo intensyvumo priklausantį medžiagos fotojautrį bei gardelės relaksaciją. Koherentinio susistiprinimo atveju ir maksimalus difrakcijos efektyvumas, ir jautris didėja, kai didėja juostelių kontrastas M. Tai įvyksta dėl to, kad mechaninio įtempio moduliaciją, gardelės įrašymo pradžioje priklausančią nuo M, keičia relaksaciniai sandaros pokyčiai, lemiantys koherentinio susistiprinimo reiškinį. Siūloma interpretacija gali paaiškinti, kodėl šis reiškinys nestebimas kai kuriuose azobenzeno oligomeriniuose sluoksniuose.


References / Nuorodos

[1] J.W. Goodman, Introduction to Fourier Optics (McGraw Hill, San Francisco, 1968),
http://www.amazon.co.uk/Introduction-Fourier-Physical-Quantum-Electronics/dp/007023776X/
[2] A. Ozols, O. Salminen, and M. Reinfelde, Relaxational self-enhancement of holographic gratings in amorphous As2S3 films, J. Appl. Phys. 75(7), 3326–3334 (1994),
http://dx.doi.org/10.1063/1.356141
[3] A. Ozols, N. Nordman, O. Salminen, and P. Riihola, Holographic recording in amorphous semiconductor films, Proc. SPIE 2968, 282–291 (1997),
http://dx.doi.org/10.1117/12.266849
[4] K. Schwartz, The Physics of Optical Recording (Springer Verlag, Berlin, 1993),
http://www.amazon.co.uk/Physics-Optical-Recording-Kurt-Schwartz/dp/364275466X/,
http://dx.doi.org/10.1007/978-3-642-75464-7
[5] M. Protasova and A. Ozols, Holographic properties of As2S3 films at high spatial frequencies, Latv. J. Phys. Tech. Sci. 3, 38–46 (1992)
[6] O.I. Shpotyuk, Photostructural transformations in amorphous chalcogenide semiconductors, Phys. Status Solidi B 183, 365–374 (1994),
http://dx.doi.org/10.1002/pssb.2221830203
[7] A.J. Lowe, S.R. Elliot, and G.N. Greaves, Extended X-ray absorption fine-structure spectroscopy of photostructural changes in amorphous arsenic chalcogenides, Phil. Mag. B 54(6), 483–490 (1986),
http://dx.doi.org/10.1080/13642818608236864
[8] S. Matsuoka, Relaxation Phenomena in Polymers (Hanser, Munich, 1992),
http://www.amazon.co.uk/Relaxation-Phenomena-Polymers-Shiro-Matsuoka/dp/3446171118/
[9] J. Teteris, Relaxation of optical properties in amorphous As2S3 films, Latv. J. Phys. Tech. Sci. 2, 55–60 (1992) [in Russian]
[10] A. Ozols, Dm. Saharovs, and M. Reinfelde, Holographic recording in amorphous As2S3 films at 633 nm, J. Non-Cryst. Solids 352, 2652–2656 (2006),
http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.072
[11] T.K. Gaylord, T.A. Rabson, F.K. Tittel, and C.R. Quick, Self-enhancement of LiNbO3 holograms, J. Appl. Phys. 44(2), 896–897 (1973),
http://dx.doi.org/10.1063/1.1662282
[12] J. Aleksejeva and J. Teteris, Volume grating recording in acrylate-based photopolymers, Latv. J. Phys. Tech. Sci. 47(3), 13–22 (2010),
http://dx.doi.org/10.2478/v10047-010-0010-5
[13] K. Shvarts, A. Ozols, P. Augustov, and M. Reinfelde, Photorefraction and self-enhancement of holograms in LiNbO3 and LiTaO3 crystals, Ferroelectrics 75(1–2), 231–249 (1987),
http://dx.doi.org/10.1080/00150198708008225
[14] F. Rickermann, S. Riehemann, K. Buse, D. Dirksen, and G. von Bally, Diffraction efficiency enhancement of holographic gratings in Bi12Ti0.76V0.24O20 crystals after recording, J. Opt. Soc. Am. B 13(10), 2299–2305 (1996),
http://dx.doi.org/10.1364/JOSAB.13.002299
[15] T. Keinonen and R. Grzymala, Dark self-enhancement in dichromated poly(vinyl alcohol) gratings: a detailed study, Appl. Opt. 38(35), 7214–7221 (1999),
http://dx.doi.org/10.1364/AO.38.007214
[16] O. Salminen, A. Ozols, P. Riihola, and P. Mönkkönen, Intensity threshold for holographic recording in amorphous As2S3 films, J. Appl. Phys. 78(2), 718–722 (1995),
http://dx.doi.org/10.1063/1.360331
[17] A. Ozols and K. Shvarts, Photosensitivity of amorphous semiconductor As-S and As-Se films under CW, nanosecond and picosecond laser irradiation, Cryst. Latt. Defects Amorph. Mater. 17(112), 235–239 (1987).
[18] M. Reinfelde and J. Teteris, Holographic self-enhancement in As–S–Se films, in: Abstracts of the 24th Scientific Conference, Institute of Solid State Physics, University of Latvia, February 20–22, 2008, ed. A. Krumins (Institute of Solid State Physics, University of Latvia, Riga, 2008) p. 46
[19] R.J. Collier, Ch.B. Burckhardt, and L.H. Lin, Optical Holography (Academic Press, New York, 1971),
http://www.amazon.co.uk/Optical-Holography-Robert-Jacob-Collier/dp/012181050X/
[20] H. Kogelnik, Coupled wave theory for thick hologram gratings, Bell Syst. Tech. J. 48(9), 2909–2947 (1969),
http://www.alcatel-lucent.com/bstj/vol48-1969/articles/bstj48-9-2909.pdf
[21] T. Suhara, H. Nishihara, and J. Koyama, Hologram recording in amorphous semiconductor films, Electronics and Communications in Japan C 59(7), 116–122 (1976)
[22] D. Saharov and A. Ozols, DFWM of focused laser beams in a-As2S3 and azobenzene oligomer films, J. Mater. Sci. Mater. Electron. 20(S1), 395–399 (2008),
http://dx.doi.org/10.1007/s10854-008-9639-8