[PDF]     http://dx.doi.org/10.3952/lithjphys.52314

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 261268 (2012)


STABLE ISOTOPES IN ENVIRONMENTAL INVESTIGATIONS
A. Mašalaitė, A. Garbaras, and V. Remeikis
Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: agne.masalaite@ftmc.lt

Received 10 August 2012; revised 21 September 2012; accepted 21 September 2012

This paper presents an overview of the most common stable isotopes (H, C, N, O, and S) that are widely used in environmental research. Much attention is given to the atmospheric aerosol particle studies involving stable isotopes. Finally, the experimental results of the carbon stable isotope composition (δ13C) in fuels from various locations (Eastern and Western Europe, China, Japan) are discussed. Additionally, recommendations for future research directions are proposed.
Keywords: aerosols in atmosphere, stable isotopes, δ13C, fuel
PACS: 92.60.Mt, 32.10.Bi, 88.20.th


STABILIEJI IZOTOPAI APLINKOS TYRIMUOSE
A. Mašalaitė, A. Garbaras, V. Remeikis
Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Pateikta tyrimų įvairiuose aplinkos sanduose, dažniausiai naudojant H, C, N ir S stabiliuosius izotopus, apžvalga. Plačiau aptariamos stabiliųjų izotopų taikymo galimybės atmosferos aerozolių tyrimuose, pvz., vertinant radiacinius ir cheminius procesus atmosferoje bei galimus klimato pokyčius, identifikuojant aerozolio dalelių šaltinius, nustatant aerozolio dalelių cheminę sudėtį, vertinant lokalius taršos apkrovos dydžius bei įtaką žmogaus sveikatai ir t. t. Galiausiai pateikiamos eksperimentiškai išmatuotos stabiliųjų anglies izotopų santykio vertės naftos produktuose (dyzeline, benzine), naudojamuose Lietuvoje, Rytų bei Vakarų Europoje ir kitose pasaulio šalyse. Šios vertės leido identifikuoti naftos gavybos vietą. Nustatyta, kad Lietuvoje ir Rytų Europos šalyse naudojamas dyzelinas ir benzinas yra Rusijoje išgaunamos naftos produktai. Daroma išvada, kad izotopų santykio metodas gali būti taikomas siekiant nustatyti aerozolio dalelių šaltinius (pvz., dyzelino ir benzino degimo produktus), bet būtina atsižvelgti į pradinį naftos produktų izotopų santykį, kuris kinta priklausomai nuo naftos išgavimo vietovės.


References / Nuorodos

[1] W. Rundel, J.R. Ehleringer, and K.A. Nagy, Stable Isotopes in Ecological Research (Springer-Verlag, New York, 1989),
http://dx.doi.org/10.1007/978-1-4612-3498-2
[2] B. Fry, Stable Isotope Ecology (Springer, USA, 2006),
http://dx.doi.org/10.1007/0-387-33745-8
[3] R. Chesselet, M. Fontugne, P. Buat-Ménard, U. Ezat, and C. E. Lambert, The origin of particulate organic carbon in the marine atmosphere as indicated by its stable carbon isotopic composition, Geophys. Res. Lett. 8, 345–348 (1981),
http://dx.doi.org/10.1029/GL008i004p00345
[4] H. Cachier. P. Buat-Ménard, M. Fontugne, and J. Rancher, Source terms and source strengths of the carbonaceous aerosol in the tropics, J. Atmos. Chem. 3, 469–489 (1985),
http://dx.doi.org/10.1007/BF00053872
[5] H. Cachier, P. Buat-Ménard, M. Fontugne, and R. Chesselet, Long-range transport of continentally-derived particulate carbon in the marine atmosphere: evidence from stable carbon isotopes studies, Tellus B 38B, 161–177 (1986),
http://dx.doi.org/10.1111/j.1600-0889.1986.tb00184.x
[6] R. Fisseha, M. Saurer, M. Jäggi, R.T.W. Siegwolf, J. Dommena, S. Szidat, V. Samburova, and U. Baltensperger, Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes, Atmos. Environ. 43, 431–437 (2009),
http://dx.doi.org/10.1016/j.atmosenv.2008.08.041
[7] V. Ulevicius, S. Byčenkienė, V. Remeikis, A. Garbaras, S. Kecorius, J. Andriejauskienė, D. Jasinevičienė, and G. Mocnik, Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions, Atmos. Res. 98, 190–200 (2010), http://dx.doi.org/10.1016/j.atmosres.2010.03.021
[8] T. Hui, X. Xianming, R. Wilkins, and T. Yonghun, An experimental comparison of gas generation from three oil fractions: Implications for the chemical and stable carbon isotopic signatures of oil cracking gas, Org. Geochem. 46, 96–112 (2012),
http://dx.doi.org/10.1016/j.orggeochem.2012.01.013
[9] G.H.F. Young, D. McCarroll, N.J. Loader, and A.J. Kirchhefer, A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes, Holocene 20(3), 315–324 (2010),
http://dx.doi.org/10.1177/0959683609351902
[10] N.J. Loader, I. Robertson, and D. McCarroll, Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings, Palaeogeogr. Palaeoclimatol. Palaeoecol. 196, 395–407 (2003),
http://dx.doi.org/10.1016/S0031-0182(03)00466-8
[11]  D. McCarroll, M.H. Gagen, N.J. Loader, I. Robertson, K.J. Anchukaitis, S. Los, G.H.F. Young, R. Jalkanen, A. Kirchhefer, and J.S. Waterhouse, Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere, Geochim. Cosmochim. Acta 73, 1539–1547 (2009),
http://dx.doi.org/10.1016/j.gca.2008.11.041
[12] J. Rudolph, Gas chromatography-isotope ratio mass spectrometry, in: Volatile Organic Compounds in the Atmosphere, ed. R. Koppmann (Blackwell Publisher, Oxford, 2007) pp. 388–466,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1405131152.html
[13] L.A. Martinelli, P.B. Camargo, L.B.L.S. Lara, R.L. Victoria, and P. Artaxo, Stable carbon and nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil, Atmos. Environ. 36, 2427–2432 (2002),
http://dx.doi.org/10.1016/S1352-2310(01)00454-X
[14] R. Fisseha, M. Saurer, M. Jäggi, S. Szidat, R.T.W. Siegwolf, and U. Baltensperger, Determination of stable carbon isotopes of organic acids and carbonaceous aerosols in the atmosphere, Rapid Commun. Mass Spectrom. 20, 2343–2347 (2006),
http://dx.doi.org/10.1002/rcm.2586
[15] H. Wang, and K. Kawamura, Stable carbon isotopic composition of low-molecular-weight dicarboxylic acids and ketoacids in remote marine aerosols, J. Geophys. Res. 111, D07304 (2006),
http://dx.doi.org/10.1029/2005JD006466
[16] H. Yu, P.K. Quinn, G. Feingold, R.A. Kahn, M. Chin, and S.E. Schwartz, Remote sensing and in situ measurements of aerosol properties, burdens, and radiative forcing, in: Atmospheric Aerosol Properties and Climate Impacts, A Report by U.S. Climate Change Science Program and the Subcommittee on Global Change Research (National Aeronautics and Space Administration, Washington, D.C., U.S.A., 2009) pp. 44–49, PDF
[17] H. Katsura, The effect of electrically charged clouds on the stable nitrogen isotope ratio and the anion concentrations in cloud-based aerosols, Int. J. Environ. Res. 6(2), 457–466 (2012)
[18] M.E. Erupe, Sources and Source Processes of Organic Nitrogen Aerosols in the Atmosphere, All Graduate Theses and Dissertations (Utah State University, 2008), retrieved July 23, http://digitalcommons.usu.edu/etd/196
[19] G. Trakimas, T.D. Jardine, R. Barisevičiūtė, A. Garbaras, R. Skipitytė, and V. Remeikis, Ontogenetic dietary shifts in European common frog (Rana temporaria) revealed by stable isotopes, Hydrobiologia 675, 87–95 (2011),
http://dx.doi.org/10.1007/s10750-011-0804-3
[20] M. Górka, E. Zwolińska, M. Malkiewicz, D. Lewicka-Szczebak, and M.O. Jędrysek, Carbon and nitrogen isotope analyses coupled withpalynological data of PM10 in Wrocław city (SW Poland) –assessment of anthropogenic impact, Isot. Environ. Health Stud. 48, 327–344 (2012),
http://dx.doi.org/10.1080/10256016.2012.639449
[21] E.W. Holt and H.P. Taylor Jr., 18O/16O mapping and hydrogeology of a short-lived (≈10 years) fumarolic (>500ºC)  meteoric–hydrothermal event in the upper part of the 0.76 Ma Bishop Tuff outflow sheet, California, J. Volcanol. Geoth. Res. 83, 115–139 (1998),
http://dx.doi.org/10.1016/S0377-0273(98)00014-6
[22] A.J. Kettle, and M.O. Andreae, Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models, J. Geophys. Res. 105, 26793–26808 (2000),
http://dx.doi.org/10.1029/2000JD900252
[23] R.J. Charlson, J.E. Lovelock, M.O. Andreae, and S.G. Warren, Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate, Nature 326, 655–661 (1987),
http://dx.doi.org/10.1038/326655a0
[24] L.I. Wassenaar, and K.A. Hobson, Natal origins of migratory monarch butterflies at wintering colonies in Mexico: New isotopic evidence, Proc. Natl. Acad. Sci. 95, 15436–15439 (1998),
http://dx.doi.org/10.1073/pnas.95.26.15436
[25] K.A. Hobson and L.I. Wassenaar, Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers, Oecologia 109, 142–148 (1997),
http://dx.doi.org/10.1007/s004420050068
[26] J.E. Losey, L.S. Rayor, and M.E. Carter, Transgenic pollen harms monarch larvae, Nature 399, 214 (1999),
http://dx.doi.org/10.1038/20338
[27] A. Schimmelmann, and M.J. DeNiro, Stable isotopic studies on chitin. III. The D/H and 18O/16O ratios in arthropod chitin, Geochim. Cosmochim. Acta 50, 1485–1496 (1986),
http://dx.doi.org/10.1016/0016-7037(86)90322-4
[28] M.F. Estep and H. Dabrowski, Tracing food webs with stable hydrogen isotopes, Science 209, 1537–1538 (1980),
http://dx.doi.org/10.1126/science.209.4464.1537
[29] A.B. Cormie, H.P. Schwarcz, and J. Gray, Relation between hydrogen isotopic ratios of bone collagen and rain, Geochim. Cosmochim. Acta 58, 377–391 (1994),
http://dx.doi.org/10.1016/0016-7037(94)90471-5
[30] R.F. Miller, P. Fritz, and A.V. Morgan, Climatic implications of D/H ratios in beetle chitin, Palaeogeogr. Palaeoclimatol. Palaeoecol. 66, 277–288 (1988),
http://dx.doi.org/10.1016/0031-0182(88)90204-0
[31] J. Morrison, T. Brockwell, T. Merren, F. Fourel, and A.M. Phillips, On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples, Anal. Chem. 73, 3570–3575 (2001),
http://dx.doi.org/10.1021/ac001447t
[32] G.J. Bowen, L.I. Wassenaar, and K.A. Hobson, Global application of stable hydrogen and oxygen isotopes to wildlife forensics, Oecologia 143, 337–348 (2005),
http://dx.doi.org/10.1007/s00442-004-1813-y
[33] M. Diaz Somoano, M. Kylander, D.J. Weiss, A. Lopez Anton, I. Suarez Ruiz, and R. Martınez Tarazona, International Conference on Coal Science and Technology, Nottingham, CD- paper 2P2 (2007)
[34] J. Chen, M. Tan, Y. Li, Y. Zhang, W. Lu, Y. Tong, G. Zhang, and Y. Li, A lead isotope record of Shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline, Atmos. Environ. 39, 1245–1253 (2005),
http://dx.doi.org/10.1016/j.atmosenv.2004.10.041
[35] W. Wang, X. Liu, L. Zhao, D. Guo, X. Tian, and F. Adams, Effectiveness of leaded petrol phase-out in Tianjin, China, based on the aerosol lead concentration and isotope abundance ratio, Sci. Total Environ. 364, 175–187 (2006),
http://dx.doi.org/10.1016/j.scitotenv.2005.07.002
[36] B.P. Jackson, P.V. Winger, and P.J. Lasier, Atmospheric lead deposition to Okefenokee Swamp, Georgia, USA. Environ. Pollut. 130, 445–451 (2004),
http://dx.doi.org/10.1016/j.envpol.2003.12.019
[37] D. Widory, S. Roy, Y. Moulec, G. Goupil, A. Cochere, and C. Guerrot, The origin of atmospheric particles in Paris: a view through carbon and lead isotopes, Atmos. Environ. 38, 953–961 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2003.11.001
[38] J. Heintzenberg, Aerosols – physics and chemistry of aerosols, in: Encyclopaedia of Atmospheric Sciences, ed. J.R. Holton (Academic Press, Oxford, 2003) pp. 34–40,
http://www.amazon.co.uk/Encyclopedia-Atmospheric-Sciences-Reference-Works/dp/0122270908/
[39] National Research Council (NRC), Research Priorities for Airborne Particulate Matter, IV Continuing Research Progress (National Academy Press, Washington, USA, 2004),
http://www.nap.edu/catalog.php?record_id=10957
[40] U. Pöschl, Atmospheric aerosols: composition, transformation, climate and health effects, Angew. Chem. Int. Ed. 44, 7520–7540 (2005),
http://dx.doi.org/10.1002/anie.200501122
[41] Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis (Cambridge University Press, UK, 2007),
http://www.cambridge.org/gb/knowledge/isbn/item1164520/
[42] P. Kulkarni, P.A. Baron, and K. Willeke, Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed. (John Wiley & Sons, New Jersey, 2011),
http://dx.doi.org/10.1002/9781118001684
[43] H. Wang and K. Kawamura, Stable carbon isotopic composition of low-molecular-weight dicarboxylic acids and ketoacids in remote marine aerosols. J. Geophys. Res. 111, D07304 (2006),
http://dx.doi.org/10.1029/2005JD006466
[44] A. Nel, Air pollution-related illness: effects of particles, Science 308, 804–806 (2005),
http://dx.doi.org/10.1126/science.1108752
[45] D.B. Kittelson, Engines and nanoparticles: A review, J. Aerosol Sci. 29, 575–588 (1998),
http://dx.doi.org/10.1016/S0021-8502(97)10037-4
[46] D. Ceburnis, A. Garbaras, S. Szidat, M. Rinaldi, S. Fahrni, N. Perron, L.Wacker, S. Leinert, V. Remeikis, M.C. Facchini, A.S.H. Prevot, S.G. Jennings, M. Ramonet, and C.D. O’Dowd, Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis, Atmos. Chem. Phys. 11, 8593–8606 (2011),
http://dx.doi.org/10.5194/acp-11-8593-2011
[47] D.G. Nash, T. Baer, and M.V. Johnston, Aerosol mass spectrometry: An introductory review, Int. J. Mass Spectrom. 258, 2–12 (2006),
http://dx.doi.org/10.1016/j.ijms.2006.09.017
[48] P. Ghosh and W.A. Brand, Stable isotope ratio mass spectrometry in global climate change research, Int. J. Mass Spectr. 228, 1–33 (2003),
http://dx.doi.org/10.1016/S1387-3806(03)00289-6
[49] A. Garbaras J. Andriejauskienė, R. Barisevičiūtė, and V. Remeikis, Tracing of atmospheric aerosol sources using stable carbon isotopes, Lith. J. Phys. 48, 259–264 (2008),
http://dx.doi.org/10.3952/lithjphys.48309
[50] A. Garbaras, I. Rimšelytė, K. Kvietkus, and V. Remeikis, δ13C values in size-segregated atmospheric carbonaceous aerosols at a rural site in Lithuania, Lith. J. Phys. 49, 229–236 (2009),
http://dx.doi.org/10.3952/lithjphys.49202
[51] V. Remeikis, A. Plukis, R. Plukienė, A. Garbaras, R. Barisevičiūtė, A. Gudelis, R. Gvozdaitė, G. Duškesas, and L. Juodis, Method based on isotope ratio mass spectrometry for evaluation of carbon activation in the reactor graphite, Nucl. Eng. Des. 240, 2697–2703 (2010),
http://dx.doi.org/10.1016/j.nucengdes.2010.06.020
[52] S.E. Bush, D.E Pataki, and J.R. Ehleringer, Sources of variation in δ13C of fossil fuel emissions in Salt Lake City, USA, Appl. Geochem. 22, 715–723 (2007),
http://dx.doi.org/10.1016/j.apgeochem.2006.11.001
[53] P.P. Tans, 13C/12C of industrial CO2, in: Carbon Cycle Modeling, ed. B. Bolin (John Wiley & Sons, Chichester, New York, 1981) pp. 127–129
[54] R.J. Andres, G. Marland, T. Boden, and S. Bischof, Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751–1991, and an estimate of their isotopic composition and latitudinal distribution, in: The Carbon Cycle, ed. T.M.L. Wigley and D.S. Schimel (Cambridge University Press, Cambridge, 2000) pp. 53–62,
http://www.cambridge.org/gb/knowledge/isbn/item1115190/
[55] D. Lopez-Veneroni, The stable carbon isotope composition of PM2.5 and PM10 in Mexico City Metropolitan Area air, Atmos. Environ. 43, 4491–4502 (2009),
http://dx.doi.org/10.1016/j.atmosenv.2009.06.036
[56] D. Widory, Combistibles, fuels and their combustion products: A view through carbon isotopes, Combust. Theor. Model. 10, 831–841 (2006),
http://dx.doi.org/10.1080/13647830600720264
[57] M. Górka, P.E. Sauer, D. Lewicka-Szczebak, and M.O. Jędrysek, Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2, Environ. Pollut. 159, 294–301 (2011),
http://dx.doi.org/10.1016/j.envpol.2010.08.027
[58] B. Mycke, K. Hall, and P. Leplat, Carbon isotopic composition of individual hydrocarbons and associated gases evolved from micro-scale sealed vessel (MSSV) pyrolysis of high molecular weight organic material, Org. Geochem. 21, 787–800 (1994),
http://dx.doi.org/10.1016/0146-6380(94)90020-5