[PDF]     http://dx.doi.org/10.3952/lithjphys.52401

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 285294 (2012)


PHOTON CORRELATION AND STATISTICS OF SPONTANEOUS PARAMETRIC DOWN-CONVERSION PUMPED BY BLUE LED IN LiIO3 CRYSTAL
J. Galinisa, M. Karpińskib, G. Tamošauskas a, K. Dobekc,d, and A. Piskarskasa
aDepartment of Quantum Electronics, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius, Lithuania
bFaculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland
cInstitute of Physics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
dFaculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
E-mail: justinas.galinis@gmail.com

Received 6 January 2012; revised 16 April 2012; accepted 22 June 2012

We report on the measurement of photon coincidence and photon number statistics of the spontaneous parametric down-converted radiation excited by incoherent pump. A high ratio of photon coincidences in case of multimode acquisition suggests that the present technique may find application in quantum experiments. Experimental and numerical simulation results confirmed that the coincidence ratio in a photon counting experiment is tightly coupled to the coherence of the pump beam. An experiment on verification of statistical properties of the down-converted radiation allowed us to evaluate the afterpulse generation probability of the photon counters.
Keywords: spontaneous parametric down-conversion, biphoton field, photon correlation, photon statistics
PACS: 42.50.Ar, 42.65.Lm


PARAMETRINĖS FLUORESCENCIJOS, ŽADINAMOS MĖLYNU ŠVIESOS DIODU LiIO3 KRISTALE, FOTONŲ KORELIACIJA IR STATISTIKA
J. Galinisa, M. Karpińskib, G. Tamošauskasa , K. Dobekc,d, A. Piskarskasa
aVilniaus universiteto Kvantinės elektronikos katedra, Vilnius, Lietuva
bVaršuvos universiteto Fizikos fakultetas, Varšuva, Lenkija
cMikalojaus Koperniko universiteto Fizikos institutas, Torūnė, Lenkija
dAdomo Mickevičiaus universiteto Fizikos fakultetas, Poznanė, Lenkija

Darbe pateikiami parametrinės fluorescencijos, žadinamos nekoherentiniu kaupinimu, fotonų koreliacijos ir statistikos matavimų rezultatai. Didelis sutampančių fotonų srautas daugiamodžio šviesolaidžio detekcijos atveju parodo, kad pateiktas bifotonio lauko generavimo metodas gali būti taikomas kvantiniuose eksperimentuose. Eksperimentiniai ir skaitmeninio modeliavimo rezultatai patvirtina, kad fotonų sutapimo tikimybė glaudžiai siejasi su kaupinimo pluošto koherentiškumu. Parametrinės fluorescencijos fotonų statistikos rezultatai leido įvertinti naudotų fotonų detektorių postimpulsų tikimybę.


References / Nuorodos

[1] W.H. Louisell, A. Yariv, and A.E. Siegman, Quantum fluctuations and noise in parametric processes, Phys. Rev. 124 , 1646–1654 (1961),
http://dx.doi.org/10.1103/PhysRev.124.1646
[2] S.E. Harris, M.K. Oshman, and R.L. Byer, Observation of tunable parametric fluorescence, Phys. Rev. Lett. 18 , 732–734 (1967),
http://dx.doi.org/10.1103/PhysRevLett.18.732
[3] F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis, R. Machulka, A.M. Perego, K.Y. Spasibko, A. Allevi, M. Bondani, and P. Mataloni, High degree of entanglement and nonlocality of a two-photon state generated at 532 nm, Eur. Phys. J. Spec. Top. 199 , 111–125 (2011),
http://dx.doi.org/10.1140/epjst/e2011-01507-y
[4] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145–195 (2002),
http://dx.doi.org/10.1103/RevModPhys.74.145
[5] S. Cialdi, F. Castelli, and M.G.A. Paris, Properties of entangled photon pairs generated by a CW laser with small coherence time: theory and experiment, J. Mod. Opt. 56, 215 (2009),
http://dx.doi.org/10.1080/09500340802187332
[6] Q. Sun, P.R. Hemmer, and M.S. Zubairy, Quantum lithography with classical light: Generation of arbitrary patterns, Phys. Rev. A 75, 065803 (2007),
http://dx.doi.org/10.1103/PhysRevA.75.065803
[7] T. Sleator and H. Weinfurter, Realizable universal quantum logic gates, Phys. Rev. Lett. 74, 4087–4090 (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.4087
[8] Z. Zhao, K.A. Meyer, W.B. Whitten, and R.W. Shaw, Optical absorption measurements with parametric down-converted photons, Anal. Chem. 80 , 7635 (2008),
http://dx.doi.org/10.1021/ac800911t
[9] A. Halevy, E. Megidish, L. Dovrat, H.S. Eisenberg, P. Becker, and L. Bohatý, The biaxial nonlinear crystal BiB3O6 as a polarization entangled photon source using non-collinear type-II parametric down-conversion, Opt. Express 19, 20420–20434 (2011),
http://dx.doi.org/10.1364/OE.19.020420
[10] C.L. Salter, R.M. Stevenson, I. Farrer, C.A. Nicoll, D.A. Ritchie, and A.J. Shields, An entangled-light-emitting diode, Nature 465, 594–597 (2010),
http://dx.doi.org/10.1038/nature09078
[11] D.L. Weinberg, Observation of optical parametric noise pumped by a mercury lamp, J. Appl. Phys. 41, 4239–4240 (1970),
http://dx.doi.org/10.1063/1.1658444
[12] G. Tamošauskas, J. Galinis, A. Dubietis, and A. Piskarskas, Observation of spontaneous parametric down-conversion excited by high brightness blue LED, Opt. Express 18, 4310–4315 (2010),
http://dx.doi.org/10.1364/OE.18.004310
[13] J. Galinis, M. Karpiński, G. Tamošauskas, K. Dobek, and A. Piskarskas, Photon coincidences in spontaneous parametric down-converted radiation excited by a blue LED in bulk LiIO3 crystal, Opt. Express 19, 10351–10358 (2011),
http://dx.doi.org/10.1364/OE.19.010351
[14] C.K. Hong, Z.Y. Ou, and L. Mandel, Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59, 2044–2046 (1987),
http://dx.doi.org/10.1103/PhysRevLett.59.2044
[15] F.T. Arecchi, Measurement of the statistical distribution of Gaussian and laser sources, Phys. Rev. Lett. 15, 912–916 (1965),
http://dx.doi.org/10.1103/PhysRevLett.15.912
[16] M. Avenhaus, H.B. Coldenstrodt-Ronge, K. Laiho, W. Mauerer, I.A. Walmsley, and C. Silberhorn, Photon number statistics of multimode parametric down-conversion, Phys. Rev. Lett. 101, 053601 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.053601
[17] E. Waks, B.C. Sanders, E. Diamanti, and Y. Yamamoto, Highly nonclassical photon statistics in parametric down-conversion, Phys. Rev. A 73, 033814 (2006),
http://dx.doi.org/10.1103/PhysRevA.73.033814
[18] J.W. Goodman, Statistical Optics (John Willey & Sons, Inc., New York, 2000) pp. 465–490,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471399167.html
[19] L. Dovrat, M. Bakstein, D. Istrati, A. Shaham, and H.S. Eisenberg, Measurements of the dependence of the photon-number distribution on the number of modes in parametric down-conversion, Opt. Express 20, 2266–2276 (2012),
http://dx.doi.org/10.1364/OE.20.002266
[20] M. Curty, T. Moroder, X. Ma, and N. Lütkenhaus, Non-Poissonian statistics from Poissonian light sources with application to passive decoy state quantum key distribution, Opt. Lett. 34, 3238–3240 (2009),
http://dx.doi.org/10.1364/OL.34.003238
[21] J. Galinis, G. Tamošauskas, and A. Piskarskas, Modeling of photon coincidence and dispersive properties of spontaneous parametric down-converted field excited by incoherent source, Opt. Commun. 285, 1289 (2011),
http://dx.doi.org/10.1016/j.optcom.2011.10.072
[22] H. Di Lorenzo Pires, F.M.G.J. Coppens, and M.P. van Exter, Type-I spontaneous parametric down-conversion with a strongly focused pump, Phys Rev. A 83, 033837 (2011),
http://dx.doi.org/10.1103/PhysRevA.83.033837
[23] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995),
http://www.cambridge.org/lt/knowledge/isbn/item1141490/Optical Coherence and Quantum Optics/
[24] L. Campbell, Afterpulse measurement and correction, Rev. Sci. Instrum. 63, 5794 (1992),
http://dx.doi.org/10.1063/1.1143365
[25] G.F. Zhang, S.L. Dong, T. Huang, Y. Liu, J. Wang, L.T. Xiao, and S.T. Jia, Photon statistical measurement of afterpulse probability, Int. J. Mod. Phys. B 22, 1941–1946 (2008),
http://dx.doi.org/10.1142/S0217979208039137