[PDF]    http://dx.doi.org/10.3952/lithjphys.53204

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 53, 104111 (2013)


NUMERICAL MODELLING OF SELF-HEATING EFFECTS ON GUIDING MODES OF HIGH-POWER PHOTONIC CRYSTAL FIBRE LASERS
L. Mousavia, M. Sabaeianb, and H. Nadgaranc
aDepartment of Physics, Dezful Branch, Islamic Azad University, Dezful, Iran
bDepartment of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
cDepartment of Physics, College of Science, University of Shiraz, Shiraz 71454, Iran
E-mail: sabaeian@scu.ac.ir

Received 24 June 2012; revised 21 October 2012; accepted 20 June 2013

The influence of heat generation on propagating modes in a high-power large-mode-area photonic crystal fibre laser was investigated. The temperature distribution, temperature gradient, thermally induced stresses were first simulated. Then the Maxwell’s wave equation with taking the thermal refractive index tensor into account was solved to observe the effects of heat on propagating modes. The results show sensible modifications for TE, TM, and EH mode profiles. However, the linear polarized fundamental mode (HE) was not affected under thermal effects.
Keywords: thermal effects, photonic crystal fibre laser, thermal dispersion, thermal stress
PACS: 42.55.Tv, 42.60.JF, 44.10.+i


KAITIMO ĮTAKOS DIDELĖS GALIOS FOTONINIO KRISTALO ŠVIESOLAIDINIO LAZERIO SKLINDANČIOMS MODOMS SKAITMENINIS MODELIAVIMAS
L. Mousavia, M. Sabaeianb, H. Nadgaranc
aIslamiškasis Azado universitetas, Dezfulis, Iranas
bAhvazo šahido Čamrano universitetas, Ahvazas, Iranas
cŠirazo universitetas, Širazas, Iranas


References / Nuorodos

[1] W.J. Wadsworth, R.M. Percival, G. Bouwmans, J.C. Knight, and P.St.J. Russell, High power air-clad photonic crystal fibre laser, Opt. Express 11, 48–53 (2003),
http://dx.doi.org/10.1364/OE.11.000048
[2] L. Michaille, C.R. Bennett, D.M. Taylor, T.J. Shepherd, J. Broeng, H.R. Simonsen, and A. Petersson, Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area, Opt. Lett. 30, 1668–1670 (2005),
http://dx.doi.org/10.1364/OL.30.001668
[3] N.A. Mortensen, J.R. Folkenberg, M.D. Nielsen, and K.P. Hansen, Modal cutoff and the V-parameter in photonic crystal fibers, Opt. Lett. 28, 1879–1881 (2003),
http://dx.doi.org/10.1364/OL.28.001879
[4] N.A. Mortensen, M.D. Nielsen, J.R. Folkenberg, A. Petersson, and H.R. Simonsen, Improved large-mode-area endlessly single-mode photonic crystal fibers, Opt. Lett. 28, 393–395 (2003),
http://dx.doi.org/10.1364/OL.28.000393
[5] T.A. Birks, J.C. Knight, and P.St.J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett. 22, 961–963 (1997),
http://dx.doi.org/10.1364/OL.22.000961
[6] J. Limpert, O. Schmdt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, Extended single-mode photonic crystal fiber lasers, Opt. Express 14, 2715–2720 (2006),
http://dx.doi.org/10.1364/OE.14.002715
[7] J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tünnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Express 11, 818–823 (2003),
http://dx.doi.org/10.1364/OE.11.000818
[8] J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zelmer, T. Peschel, V. Guyenot, and A. Tünnermann, Thermo-optical properties of air-clad photonic crystal fiber lasers in high-power operation, Opt. Express 11, 2982–2990 (2003),
http://dx.doi.org/10.1364/OE.11.002982
[9] M. Sabaeian, H. Nadgaran, M. De Sario, L. Mecia, and F. Prudenzano, Thermal effects on double clad octagonal Yb:glass fibre laser, Opt. Mater. 31, 1300 (2009),
http://dx.doi.org/10.1016/j.optmat.2008.10.034
[10] Y. Jeong, S. Baek, P. Dupriez, J.-N. Maran, J.K. Sahu, J. Nilsson, and B. Lee, Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection, Opt. Express 16, 19865–19871 (2008),
http://dx.doi.org/10.1364/OE.16.019865
[11] T. Qui, L. Li, A. Schulzgen, V.T. Temyanko, T. Luo, S. Jiang, A. Mafi, J.V. Moloney, and N. Peyghambarian, Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers, IEEE Photon. Technol. Lett. 16, 2592–2594 (2004),
http://dx.doi.org/10.1109/LPT.2004.836352
[12] Ch. Markos, K. Vlachos, and G. Kakarantzas, Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber, Opt. Express 18, 24344–24351 (2010),
http://dx.doi.org/10.1364/OE.18.024344
[13] F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, Thermally induced waveguide changes in active fibers, Opt. Express 20, 3997–4008 (2012),
http://dx.doi.org/10.1364/OE.20.003997
[14] M. Sabaeian, L. Mousave, and H. Nadgaran, Investigation of thermally-induced phase mismatching in continuous-wave second harmonic generation: A theoretical model, Opt. Express 18, 18732–18743 (2010),
http://dx.doi.org/10.1364/OE.18.018732
[15] B. Ward, C. Robin, and I. Dajani, Origin of thermal modal instabilities in large mode area fiber amplifiers, Opt. Express 20, 11407–11422 (2012),
http://dx.doi.org/10.1364/OE.20.011407
[16] J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier, Opt. Express 12, 1313–1319 (2004),
http://dx.doi.org/10.1364/OPEX.12.001313
[17] S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation, Opt. Express 14, 6091–6097 (2006),
http://dx.doi.org/10.1364/OE.14.006091
[18] J.W. Dawson, M.J. Messerly, R.J. Beach, M.Y. Shverdin, E.A. Stappaerts, A.K. Sridharan, P.H. Pax, J.E. Heebner, C.W. Siders, and C.P.J. Barty, Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power, Opt. Express 16, 13240–13266 (2008),
http://dx.doi.org/10.1364/OE.16.013240
[19] X. Cheng, and J. Xu, Thermal and thermal-optical effects in high-power photonic crystal fiber lasers, Opt. Eng. 45, 124204 (2006),
http://dx.doi.org/10.1117/1.2402492
[20] D.C. Brown and H.J. Hoffman, Thermal, stress, and thermo-optic effects in high average power double clad silica fiber lasers, IEEE J. Quantum Electron. 37, 207–217 (2001),
http://dx.doi.org/10.1109/3.903070
[21] P. Jund and R. Jullien, Molecular-dynamic calculation of the thermal conductivity of vitreous silica, Phys. Rev. B 59, 13707–13711 (1999),
http://dx.doi.org/10.1103/PhysRevB.59.13707
[22] M. Sabaeian, Analytical solutions for anisotropic time-dependent heat equations with Robin boundary condition for cubic-shaped solid-state laser crystal, Appl. Opt. 51, 7150–7159 (2012),
http://dx.doi.org/10.1364/AO.51.007150
[23] H.-L. Lee, Transient microbending loss by thermal loading in double-coated optical fibers, Opt. Eng. 42, 969–976 (2003),
http://dx.doi.org/10.1117/1.1555661
[24] W. Xie, S.-Ch. Tam, Y.-L. Lam, K.S. Lai, R. Wu, Y. L. Lim, and E. Lau, Analysis of a dynamical procedure on diode-end-pumped solid-state lasers, IEEE J. Quantum Electron. 37, 1368–1372 (2001),
http://dx.doi.org/10.1109/3.952550
[25] J.F. Nye, Physical Properties of Crystals (Oxford University Press, London, 1967),
http://ukcatalogue.oup.com/product/9780198511656.do#.UevmOKwSrK0
[26] J.M. Eggleston, T.J. Kane, K. Kuhn,; J. Unternahrer, and R.L. Byer The slab geometry laser – part I: Theory, IEEE J. Quantum Electron. 20, 289–301 (1984),
http://dx.doi.org/10.1109/JQE.1984.1072386