[PDF]    http://dx.doi.org/10.3952/lithjphys.53406

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 53, 227237 (2013)


FABRICATION OF PERIODIC MICRO-STRUCTURES BY HOLOGRAPHIC LITHOGRAPHY
E. Stankevičiusa, M. Gedvilasa, B. Voisiata, M. Malinauskasb, and G. Račiukaitisa
aCenter for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: evaldas.stankevicius@ar.fi.lt
bLaser Research Center, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania

Received 27 May 2013; revised 29 September 2013; accepted 4 December 2013

The principles of the holographic lithography technique are reviewed, and the ability in the formation of structures with different periods by the holographic lithography technique in SZ2080 is demonstrated. The influence of laser exposure, phase shift between interfering laser beams, and the used laser wavelength on the structures fabricated by the four-beam interference technique has been studied. It is shown that by using the interfering beams with a different phase is it possible to reduce the period of the structure √2 times compared to the four interfering beams of the same phase. Fabrication of micro-structures by the holographic lithography technique can be realized via multi-photon and single-photon polymerization processes. The structures created by these two techniques are compared. Finally, in the experiments with the five-beam interference, the double-period effect was observed by adding the zero-order beam with a low intensity. The fabricated periodic micro-structures have the potential to be used as a scaffold for cell growth and micro-optics.
Keywords: holographic lithography, four-beam interference, SZ2080, periodic micro-structures, multi-photon polymerization, double-period effect
PACS: 02.50.Tt, 82.35.-x, 85.40.Hp


PERIODINIŲ MIKRODARINIŲ FORMAVIMAS HOLOGRAFINĖS LITOGRAFIJOS BŪDU
E. Stankevičiusa, M. Gedvilasa, B. Voisiata, M. Malinauskasb, G. Račiukaitisa
aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva

Straipsnyje apžvelgiami holografinės litografijos principai ir demonstruojamos holografinės litografijos galimybės suformuoti įvairaus periodo mikrodarinius SZ2080 fotopolimere. Taip pat aptariama įvairių lazerinio proceso parametrų – ekspozicijos trukmės, interferuojančių pluoštų bangos ilgio, fazės poslinkio tarp interferuojančių pluoštų – įtaka formuojamiems dariniams ir pademonstruotas dvigubo periodo efektas. Šis efektas atsiranda, kai prie keturių identiškų pirmo difrakcinio maksimumo pluoštų yra pridedamas mažo intensyvumo centrinis pluoštas (~7 kartus mažesnis už pirmo difrakcinio maksimumo pluoštą), tuomet suformuoto periodinio mikrodarinio kas antras stulpelis yra plonesnis už šalia esantį stulpelį. Formuojant pakankamai aukštus mikrodarinius (~60 μm) plonesni stulpeliai ryškinimo proceso metu sugriūna ir yra išplaunami, lieka tik storesni stulpeliai. Tokiu būdu galima padvigubinti formuojamo mikrodarinio periodą nemažinant intensyvumo pluoštų persiklojimo zonoje. Šis efektas gali būti labai naudingas daugiafotoniškai formuojant didelio periodo struktūras.
Holografinės litografijos būdu suformuoti periodiniai mikrodariniai gali būti panaudoti biomedicinoje kaip karkasai kamieninėms ląstelėms auginti, mikrofluidikoje – kontroliuoti skysčių ar dujų tekėjimą.

References / Nuorodos

[1] V. Berger, O. Gauthier-Lafaye, and E. Costard, Photonic band gaps and holography, J. Appl. Phys. 82, 60–64 (1997),
http://dx.doi.org/10.1063/1.365849
[2] M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, Fabrication of photonic crystals for the visible spectrum by holographic lithography, Nature 404, 53–56 (2000),
http://dx.doi.org/10.1038/35003523
[3] T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals, Appl. Phys. Lett. 79(6), 725–727 (2001),
http://dx.doi.org/10.1063/1.1391232
[4] T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa, Fabrication of three-dimensional periodic microstructures in photoresist SU-8 by phase-controlled holographic lithography, New J. Phys. 8(10), 250 (2006),
http://dx.doi.org/10.1088/1367-2630/8/10/250
[5] S. Maruo and K. Ikuta, Three-dimensional microfabrication by use of single-photon-absorbed polymerization, Appl. Phys. Lett. 76(19), 2656–2658 (2000),
http://dx.doi.org/10.1063/1.126742
[6] S. Maruo, O. Nakamura, and S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization, Opt. Lett. 22(2), 132–134 (1997),
http://dx.doi.org/10.1364/OL.22.000132
[7] I. Divliansky, T.S. Mayer, K.S. Holliday, and V.H. Crespi, Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography, Appl. Phys. Lett. 82(11), 1667–1669 (2003),
http://dx.doi.org/10.1063/1.1560860
[8] Y. Zhong, L. Wu, H. Su, K.S. Wong, and H. Wang, Fabrication of photonic crystals with tunable surface orientation by holographic lithography, Opt. Express 14(15), 6837–6843 (2006),
http://dx.doi.org/10.1364/OE.14.006837
[9] Y. Zhong, J. Zhou, and K.S. Wong, Two-photon fabrication of photonic crystals by single-beam laser holographic lithography, J. Appl. Phys. 107(7), 074311 (2010),
http://dx.doi.org/10.1063/1.3374476
[10] K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K.P. Chen, Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography, J. Appl. Phys. 108(7), 073113 (2010),
http://dx.doi.org/10.1063/1.3493119
[11] M. Malinauskas, P. Danilevicius, E. Balciunas, S. Rekstyte, E. Stankevicius, D. Baltriukiene, V. Bukelskiene, G. Raciukaitis, and R. Gadonas, Applications of nonlinear laser nano/microlithography: fabrication from nanophotonic to biomedical components, Proc. SPIE 8204, 820407-11 (2011),
http://dx.doi.org/10.1117/12.898982
[12] E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D. Baltriukiene, and V. Bukelskiene, Holographic lithography for biomedical applications, Proc. SPIE 8433, 843312-7 (2012),
http://dx.doi.org/10.1117/12.922793
[13] M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses, Opt. Express 18(10), 10209–10221 (2010),
http://dx.doi.org/10.1364/OE.18.010209
[14] V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, Femtosecond laser microfabrication of photonic crystals, in: 3D Laser Microfabrication, eds. H. Misawa and S. Juodkazis (WILEY-VCH, Weinheim, 2006) pp. 239–286,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527608400.html
[15] E. Hecht, Optics (Addison Wesley, San Francisco, 2002),
http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000553962
[16] A.F. Lasagni, D. Yuan, P. Shao, and S. Das, Periodic micropatterning of polyethylene glycol diacrylate hydrogel by laser interference lithography using nano- and femtosecond pulsed lasers, Adv. Eng. Mater. 11(3), B20–B24 (2009),
http://dx.doi.org/10.1002/adem.200800295
[17] M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y.K. Verevkin, C.S. Peng, T. Berthou, Z. Wang, S.M. Olaizola, and I. Ayerdi, High-power laser interference lithography process on photoresist: Effect of laser fluence and polarisation, Appl. Surf. Sci. 255(10), 5537–5541 (2009),
http://dx.doi.org/10.1016/j.apsusc.2008.07.201
[18] H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo, Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8, Opt. Express 14(17), 7943–7953 (2006),
http://dx.doi.org/10.1364/OE.14.007943
[19] E. Molotokaitė, M. Gedvilas, G. Račiukaitis, and V. Girdauskas, Picosecond laser beam interference ablation of thin metal film on glass substrate, J. Laser Micro/Nanoeng. 5, 74–79 (2010),
http://dx.doi.org/10.2961/jlmn.2010.01.0016
[20] J. Li, Y. Liu, X. Xie, P. Zhang, B. Liang, L. Yan, J. Zhou, G. Kurizki, D. Jacobs, K.S. Wong, and Y. Zhong, Fabrication of photonic crystals with functional defects by one-step holographic lithography, Opt. Express 16(17), 12899–12904 (2008),
http://dx.doi.org/10.1364/OE.16.012899
[21] G.P. Wang, C. Tan, Y. Yi, and H. Shan, Holography for one-step fabrication of three-dimensional metallodielectric photonic crystals with a single continuous wavelength laser beam, J. Mod. Opt. 50(14), 2155–2161 (2003),
http://dx.doi.org/10.1080/09500340308234567
[22] A.A. Maznev, T.F. Crimmins, and K.A. Nelson, How to make femtosecond pulses overlap, Opt. Lett. 23(17), 1378–1380 (1998),
http://dx.doi.org/10.1364/OL.23.001378
[23] S. Juodkazis, V. Mizeikis, and H. Misawa, Three-dimensional structuring of resists and resins by direct laser writing and holographic recording, in: Photoresponsive Polymers I, eds. S. Marder and K.-S. Lee (Springer, Berlin, Heidelberg, 2008) pp. 157–206,
http://dx.doi.org/10.1007/12_2007_122
[24] Y. Nakata, T. Okada, and M. Maeda, Lines of periodic hole structures produced by laser ablation using interfering femtosecond lasers split by a transmission grating, Appl. Phys. A 77(3), 399–401 (2003),
http://dx.doi.org/10.1007/s00339-003-2078-8
[25] A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, Ultralow shrinkage hybrid photosensitive material for two-photon polymerization microfabrication, ACS Nano 2(11), 2257–2262 (2008),
http://dx.doi.org/10.1021/nn800451w
[26] M. Oubaha, R. Copperwhite, C. Boothman, A. Ovsianikov, R. Kiyan, V. Purlys, M. O’Sullivan, C. McDonagh, B. Chichkov, R. Gadonas, and B. MacCraith, Influence of hybrid organic–inorganic sol–gel matrices on the photophysics of amino-functionalized UV-sensitizers, J. Mater. Sci. 46(2), 400–408 (2011),
http://dx.doi.org/10.1007/s10853-010-4853-1
[27] E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique, J. Micromech. Microeng. 22(6), 065022 (2012),
http://dx.doi.org/10.1088/0960-1317/22/6/065022
[28] E. Stankevicius, M. Malinauskas, M. Gedvilas, B. Voisiat, and G. Raciukaitis, Fabrication of periodic micro-structures by multi-photon polymerization using the femtosecond laser and four-beam interference, Mater. Sci. (Medžiagotyra) 17(3), 244–248 (2011),
http://www.ktu.lt/lt/mokslas/zurnalai/medz/medz0-106/05%20Polymers...%28pp.244-248%29.pdf
[29] M. Malinauskas, G. Bickauskaite, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption, Lith. J. Phys. 50(1), 135–140 (2010),
http://dx.doi.org/10.3952/lithjphys.50115
[30] S. Wu, J. Serbin, and M. Gu, Two-photon polymerisation for three-dimensional micro-fabrication, J. Photochem. Photobiol. A 181(1), 1–11 (2006),
http://dx.doi.org/10.1016/j.jphotochem.2006.03.004
[31] B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis, Flexible microstructuring of thin films using multi-beam interference ablation with ultrashort lasers, J. Laser Micro/Nanoeng. 6(3), 185–190 (2011),
http://dx.doi.org/10.2961/jlmn.2011.03.0002
[32] K.M. Baker, Highly corrected submicrometer grid patterning on curved surfaces, Appl. Opt. 38(2), 339–351 (1999),
http://dx.doi.org/10.1364/AO.38.000339
[33] T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses, Appl. Phys. Lett. 82(17), 2758–2760 (2003),
http://dx.doi.org/10.1063/1.1569987
[34] S. Juodkazis, V. Mizeikis, and H. Misawa, Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications, J. Appl. Phys. 106(5), 051101-14 (2009),
http://dx.doi.org/10.1063/1.3216462