[PDF]    http://dx.doi.org/10.3952/lithjphys.54109

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 3740 (2014)


SLOW RELAXATION OF RESISTANCE IN NANOSTRUCTURED La0.83Sr0.17MnO3 FILMS INDUCED BY PULSED MAGNETIC FIELDS
D. Pavilonisa and N. Žurauskienėa,b
aSemiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: dainius.pavilonis@gmail.com
bVilnius Gediminas Technical University, Naugarduko 41, LT-03227 Vilnius, Lithuania

Received 18 November 2013; accepted 4 December 2013

The results of colossal magnetoresistance (MR) relaxation investigations in nanostructured and epitaxial La-Sr-Mn-O films grown by the MOCVD technique are presented. The films were studied in a pulsed magnetic field ranged from 2 to 10 T at the temperature of 80 K. The slow relaxation of resistance which takes place during milliseconds when the magnetic field is switched off is analysed using the Kohlrausch-Williams-Watts model. It was found that this relaxation is typical of spin-glass materials and is related with properties of disordered grain boundaries of nanostructured films. The MR relaxation of epitaxial films was not observed. The influence of film preparation conditions on MR relaxation was analysed in order to develop high pulsed magnetic field sensors exhibiting small dynamic “memory” effect and operating at low temperatures.
Keywords: colossal magnetoresistance, manganites, thin films, resistance relaxation, spin-glass systems, magnetic field sensors
PACS: 75.47.Gk, 75.47.Lx, 75.50.Lk, 75.60.Lr, 85.75.Ss


LĖTOJI VARŽOS RELAKSACIJA La0,83 Sr0,17MnO3 NANODARINIŲ SLUOKSNIUOSE IMPULSINIUOSE MAGNETINIUOSE LAUKUOSE
D. Pavilonisa, N. Žurauskienėa,b
aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Nanostruktūrizuotų manganitų La0,83 Sr0,17MnO3 sluoksnių, užaugintų PI MOCVD būdu ir pasižminčių skirtingu tarpkristalitinės medžiagos defektiškumo laipsniu, magnetovaržos relaksacija ištirta 80 K temperatūroje impulsinių magnetinių laukų ruože 2–8 T. Nustatyta, kad pasibaigus magnetinio lauko impulsui, lėtoji varžos relaksacija vyksta ms laikų skalėje ir gali būti aprašyta Kohlrausch–Williams–Watts (KWW) modeliu, įskaitančiu magnetinių momentų sąveiką netvarkiose tarpkristalitinėse srityse, būdingą stikliškosioms sistemoms. Epitaksiniuose sluoksniuose, užaugintuose tokiomis pačiomis sąlygomis, magnetovaržos relaksacija 250 K temperatūroje, artimoje feromagnetinei fazei, nebuvo stebėta.

References / Nuorodos

[1] C. Israel, M.J. Calderón, and N.D. Mathur, Mater. Today 10, 24 (2007),
http://dx.doi.org/10.1016/S1369-7021(07)70242-0
 
[2] M. Schneider, O. Liebfried, V. Stankevič, S. Balevičius, and N. Žurauskienė, IEEE Trans. Magnetics 45, 430 (2009),
http://dx.doi.org/10.1109/TMAG.2008.2008539
 
[3] O. Liebfried, M. Löffler, M. Schneider, S. Balevičius, V. Stankevič, N. Žurauskienė, A. Abrutis, and V. Plaušinaitienė, IEEE Trans. Magnetics 45, 5301 (2009),
http://dx.doi.org/10.1109/TMAG.2009.2024081
 
[4] S. Balevičius, N. Žurauskienė, V. Stankevič, S. Keršulis, V. Plaušinaitienė, A. Abrutis, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, and F. Wolff-Fabris, Appl. Phys. Lett. 101, 092407 (2012),
http://dx.doi.org/10.1063/1.4749820
 
[5] H. Xi, K.-Zh. Gao, J. Ouyang, Y. Shi, and Y. Yang, J. Phys. Condens. Matter 20, 295220-1–8 (2008),
http://dx.doi.org/10.1088/0953-8984/20/29/295220
 
[6] S. Balevičius, B. Vengalis, F. Anisimovas, J. Novickij, R. Tolutis, O. Kiprijanovič, V. Pyragas, and E.E. Tornau, J. Magn. Magn. Mater. 211, 243–247 (2000),
http://dx.doi.org/10.1016/S0304-8853(99)00741-6
 
[7] M. Sirena, L.B. Steren, and J. Guimpel, Phys. Rev. B 64, 104409-1–6 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.104409
 
[8] N. Kozlova, T. Walter, K. Dörr, D. Eckert, A. Handstein, Yu. Skourski, K.-H. Müller, and L. Schultz, Physica B 346–347, 74–78 (2004),
http://dx.doi.org/10.1016/j.physb.2004.01.023
 
[9] M. Ziese, C. Srinitiwarawong, and C. Shearwood, J. Phys. Condens. Matter 10, L659–L664 (1998),
http://dx.doi.org/10.1088/0953-8984/10/38/002
 
[10] N. Žurauskienė, S. Balevičius, D. Pavilonis, V. Stankevič, S. Keršulis, and J. Novickij, IEEE Trans. Plasma Sci. 41, 2830–2835 (2013),
http://dx.doi.org/10.1109/TPS.2013.2261558
 
[11] J.C. Phillips, Rep. Prog. Phys. 59, 1133–1207 (1996),
http://dx.doi.org/10.1088/0034-4885/59/9/003
 
[12] J.R. Macdonald and J.C. Phillips, J. Chem. Phys. 122, 074510-1–8 (2005),
http://dx.doi.org/10.1063/1.1850901